IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v324y2025ics0360544225016111.html
   My bibliography  Save this article

Optical diagnostics on the combustion characteristic of ammonia pre-chamber ignition under different thermodynamic boundary conditions

Author

Listed:
  • Sun, Jiuling
  • Tang, Qinglong
  • Ma, Hailong
  • Huang, Linhui
  • Wen, Mingsheng
  • Wang, Wenjie
  • Liu, Haifeng
  • Yao, Mingfa

Abstract

The carbon-neutral property of ammonia positions it as a highly promising fuel for engines. However, ammonia exhibits poor flammability and low flame speed. Pre-chamber ignition (PCI) technology can generate multiple distributed ignition sites and significantly improve engine combustion. A passive pre-chamber with a narrow throat was designed. Natural flame luminosity imaging was applied to investigate the effect of thermodynamic boundary conditions (i.e., spark timings, intake temperatures (Tin) and compression ratios (CR)) on the combustion characteristics and jet flame development mechanism in ammonia pre-chamber ignition mode. The results present better combustion performance when the spark timings are between −20 crank angle degree (°CA) and −30 °CA after top dead center for ammonia PCI mode. Too early or late ignition may cause jet flame quenching during the jet discharge period. The combustion performance of the ammonia PCI mode can be significantly improved by increasing Tin (from 25 °C to 100 °C), which accelerates the jet flame penetration and shortens both the jet discharge period and combustion duration. A lower CR of 11 results in severe misfires, and increasing CR to 14.5 effectively improves the combustion performance of ammonia PCI mode, accompanied by more uniform jet flame propagation.

Suggested Citation

  • Sun, Jiuling & Tang, Qinglong & Ma, Hailong & Huang, Linhui & Wen, Mingsheng & Wang, Wenjie & Liu, Haifeng & Yao, Mingfa, 2025. "Optical diagnostics on the combustion characteristic of ammonia pre-chamber ignition under different thermodynamic boundary conditions," Energy, Elsevier, vol. 324(C).
  • Handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225016111
    DOI: 10.1016/j.energy.2025.135969
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225016111
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135969?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Shang & Lin, Zhelong & Qi, Yunliang & Wang, Zhi & Yang, Dongsheng & Lu, Guoxiang & Wang, Bo, 2024. "Combustion and emission characteristics of a spark ignition engine fueled with ammonia/gasoline and pure ammonia," Applied Energy, Elsevier, vol. 369(C).
    2. Xinyi Zhou & Tie Li & Run Chen & Yijie Wei & Xinran Wang & Ning Wang & Shiyan Li & Min Kuang & Wenming Yang, 2024. "Ammonia marine engine design for enhanced efficiency and reduced greenhouse gas emissions," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Ryu, Kyunghyun & Zacharakis-Jutz, George E. & Kong, Song-Charng, 2014. "Performance characteristics of compression-ignition engine using high concentration of ammonia mixed with dimethyl ether," Applied Energy, Elsevier, vol. 113(C), pages 488-499.
    4. Zhu, Sipeng & Akehurst, Sam & Lewis, Andrew & Yuan, Hao, 2022. "A review of the pre-chamber ignition system applied on future low-carbon spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Wen, Mingsheng & Liu, Haifeng & Cui, Yanqing & Ming, Zhenyang & Wang, Wenjie & Wang, Xinyan & Zhao, Hua & Yao, Mingfa, 2024. "A study on optical diagnostics and numerical simulation of dual fuel combustion using ammonia and n-heptane," Energy, Elsevier, vol. 313(C).
    6. Ryu, Kyunghyun & Zacharakis-Jutz, George E. & Kong, Song-Charng, 2014. "Effects of gaseous ammonia direct injection on performance characteristics of a spark-ignition engine," Applied Energy, Elsevier, vol. 116(C), pages 206-215.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jun & Huang, Hongyu & Kobayashi, Noriyuki & He, Zhaohong & Osaka, Yugo & Zeng, Tao, 2015. "Numerical study on effect of oxygen content in combustion air on ammonia combustion," Energy, Elsevier, vol. 93(P2), pages 2053-2068.
    2. Liu, Shang & Lin, Zhelong & Zhang, Hao & Lei, Nuo & Qi, Yunliang & Wang, Zhi, 2023. "Impact of ammonia addition on knock resistance and combustion performance in a gasoline engine with high compression ratio," Energy, Elsevier, vol. 262(PA).
    3. Lianmei Guo & Jianjun Zhu & Laibin Fu & Zhixin Li & Fanfan Liu & Zilin Wang & Xiangyang Liu & Qinqiang Dong, 2023. "Effects of Pre-Injection Strategy on Combustion Characteristics of Ammonia/Diesel Dual-Fuel Compression Ignition Mode," Energies, MDPI, vol. 16(23), pages 1-16, November.
    4. Liu, Shang & Lin, Zhelong & Qi, Yunliang & Wang, Zhi & Yang, Dongsheng & Lu, Guoxiang & Wang, Bo, 2024. "Combustion and emission characteristics of a spark ignition engine fueled with ammonia/gasoline and pure ammonia," Applied Energy, Elsevier, vol. 369(C).
    5. Tay, Kun Lin & Yang, Wenming & Li, Jing & Zhou, Dezhi & Yu, Wenbin & Zhao, Feiyang & Chou, Siaw Kiang & Mohan, Balaji, 2017. "Numerical investigation on the combustion and emissions of a kerosene-diesel fueled compression ignition engine assisted by ammonia fumigation," Applied Energy, Elsevier, vol. 204(C), pages 1476-1488.
    6. Cheng, Qiang & Muhammad, Akram & Kaario, Ossi & Ahmad, Zeeshan & Martti, Larmi, 2025. "Ammonia as a sustainable fuel: Review and novel strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    7. Jinyi Hu & Yongbao Liu & Xing He & Jianfeng Zhao & Shaojun Xia, 2024. "Application of NH 3 Fuel in Power Equipment and Its Impact on NO x Emissions," Energies, MDPI, vol. 17(12), pages 1-39, June.
    8. Xingyu Sun & Mengjia Li & Jincheng Li & Xiongbo Duan & Can Wang & Weifan Luo & Haifeng Liu & Jingping Liu, 2023. "Nitrogen Oxides and Ammonia Removal Analysis Based on Three-Dimensional Ammonia-Diesel Dual Fuel Engine Coupled with One-Dimensional SCR Model," Energies, MDPI, vol. 16(2), pages 1-18, January.
    9. Yin, Bingqian & Lu, Zhen & Shi, Lei & Lu, Tianlong & Ye, Jianpeng & Ma, Junqing & Wang, Tianyou, 2024. "Numerical simulation of a spark ignition ammonia marine engine for future ship power applications," Energy, Elsevier, vol. 302(C).
    10. Lin, Zhelong & Liu, Shang & Sun, Qiyang & Qi, Yunliang & Wang, Zhi & Li, Jun, 2024. "Effect of injection and ignition strategy on an ammonia direct injection–Hydrogen jet ignition (ADI-HJI) engine," Energy, Elsevier, vol. 306(C).
    11. Guo, Liang & Yu, Changyou & Sun, Wanchen & Zhang, Hao & Cheng, Peng & Yan, Yuying & Lin, Shaodian & Zeng, Wenpeng & Zhu, Genan & Jiang, Mengqi, 2024. "Study on effects of ethylene or acetylene addition on the stability of ammonia laminar diffusion flame by optical diagnostics and chemical kinetics," Applied Energy, Elsevier, vol. 362(C).
    12. Guo, Xinpeng & Li, Tie & Huang, Shuai & Zhou, Xinyi & Chen, Run & Wei, Wenze & Wu, Zehao & Wang, Ning & Li, Shiyan, 2025. "Characteristics of ignition, combustion and emission formation of premixed ammonia-hydrogen blends by hydrogen-fueled pre-chamber turbulent jets," Energy, Elsevier, vol. 322(C).
    13. Vikas Sharma & Angad Panesar & Guillaume de Sercey & Steven Begg, 2024. "A Review of Ammonia Combustion and Emissions Characteristics in Spark-Ignition Engines and Future Road Map," Energies, MDPI, vol. 18(1), pages 1-29, December.
    14. Ezzat, M.F & Dincer, I., 2018. "Development and assessment of a new hybrid vehicle with ammonia and hydrogen," Applied Energy, Elsevier, vol. 219(C), pages 226-239.
    15. Fengshuo He & Xiumin Yu & Yaodong Du & Zhen Shang & Zezhou Guo & Guanting Li & Decheng Li, 2019. "Inner Selective Non-Catalytic Reduction Strategy for Nitrogen Oxides Abatement: Investigation of Ammonia Aqueous Solution Direct Injection with an SI Engine Model," Energies, MDPI, vol. 12(14), pages 1-18, July.
    16. Zhang, Yanzhi & Xu, Leilei & Zhu, Yizi & Xu, Shijie & Bai, Xue-Song, 2023. "Numerical study on liquid ammonia direct injection spray characteristics under engine-relevant conditions," Applied Energy, Elsevier, vol. 334(C).
    17. Li, Shiyan & Wang, Ning & Li, Tie & Chen, Run & Yi, Ping & Huang, Shuai & Zhou, Xinyi, 2024. "Experimental investigation on liquid length of direct-injection ammonia spray under engine-like conditions," Energy, Elsevier, vol. 301(C).
    18. Elbanna, Ahmed Mohammed & Cheng, Xiaobei, 2024. "The role of charge reactivity in ammonia/diesel dual fuel combustion in compression ignition engine," Energy, Elsevier, vol. 306(C).
    19. Wang, Ying & Xiao, Fan & Zhao, Yuwei & Li, Dongchang & Lei, Xiong, 2015. "Study on cycle-by-cycle variations in a diesel engine with dimethyl ether as port premixing fuel," Applied Energy, Elsevier, vol. 143(C), pages 58-70.
    20. Chiong, Meng-Choung & Kang, Hooi-Siang & Shaharuddin, Nik Mohd Ridzuan & Mat, Shabudin & Quen, Lee Kee & Ten, Ki-Hong & Ong, Muk Chen, 2021. "Challenges and opportunities of marine propulsion with alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225016111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.