IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v322y2025ics0360544225012988.html
   My bibliography  Save this article

Experimental investigation of the performance of a PVT heat pump soil cross-seasonal energy storage system across various operation modes

Author

Listed:
  • Jiang, Duhui
  • Zhang, Jili
  • Lou, Lanting
  • Lou, Lanlan
  • Zhu, Kai
  • Dai, Jinshun

Abstract

To improve the energy efficiency of a photovoltaic thermal (PVT) heat pump system designed for soil-based cross-seasonal energy storage, this study empirically evaluates its performance across multiple operational modes. The system operates in eight distinct modes: soil source heat pump (SSHP) heating, a combination of PVT heating and SSHP heating (PVTSSHP heating), PVT heat pump (PVTHP) heating, standalone PVT heating, soil cooling, SSHP cooling, PVTSSHP cooling, and PVT heating with soil energy storage. Experimental analyses are performed to explore system behavior under representative annual conditions. Under these typical conditions, the system COPs for SSHP heating, PVTSSHP heating, PVTHP heating, PVT heating, soil cooling, SSHP cooling, and PVTSSHP cooling are determined as 4.1, 3.2, 4.2, 10.5, 10.6, 3.3, and 2.7, respectively. The heat pump COP for SSHP heating, PVTSSHP heating, PVTHP heating, SSHP cooling, and PVTSSHP cooling are recorded as 5.9, 6.8, 7.9, 5.0, and 4.9, respectively. Additionally, the thermal efficiency of the PVT array under different operational modes is measured at 27.0 % for PVTSSHP heating, 20.0 % for PVTHP heating, 14.2 % for PVT heating, 48.9 % for PVTSSHP cooling, and 32.9 % for PVT heating soil mode. The electrical efficiency of the PVT array is reported for all modes as 16.9 %, 16.5 %, 16.4 %, 16.0 %, 14.7 %, 15.5 %, 16.0 %, and 16.4 %.

Suggested Citation

  • Jiang, Duhui & Zhang, Jili & Lou, Lanting & Lou, Lanlan & Zhu, Kai & Dai, Jinshun, 2025. "Experimental investigation of the performance of a PVT heat pump soil cross-seasonal energy storage system across various operation modes," Energy, Elsevier, vol. 322(C).
  • Handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225012988
    DOI: 10.1016/j.energy.2025.135656
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225012988
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135656?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Minwoo & Ham, Se Hyeon & Lee, Sewon & Kim, Jinyoung & Kim, Yongchan, 2023. "Multi-objective optimization of solar-assisted ground-source heat pumps for minimizing life-cycle cost and climate performance in heating-dominated regions," Energy, Elsevier, vol. 270(C).
    2. Tugba Gurler & Theo Elmer & Yuanlong Cui & Siddig Omer & Saffa Riffat, 2018. "Experimental investigation of a novel PVt/heat pump system for energy-efficient poultry houses," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 13(4), pages 404-413.
    3. Bakirci, Kadir & Ozyurt, Omer & Comakli, Kemal & Comakli, Omer, 2011. "Energy analysis of a solar-ground source heat pump system with vertical closed-loop for heating applications," Energy, Elsevier, vol. 36(5), pages 3224-3232.
    4. Kjellsson, Elisabeth & Hellström, Göran & Perers, Bengt, 2010. "Optimization of systems with the combination of ground-source heat pump and solar collectors in dwellings," Energy, Elsevier, vol. 35(6), pages 2667-2673.
    5. Yong-Dae Jeong & Min Gyung Yu & Yujin Nam, 2017. "Feasibility Study of a Heating, Cooling and Domestic Hot Water System Combining a Photovoltaic-Thermal System and a Ground Source Heat Pump," Energies, MDPI, vol. 10(8), pages 1-29, August.
    6. Yang, Weibo & Zhang, Heng & Liang, Xingfu, 2018. "Experimental performance evaluation and parametric study of a solar-ground source heat pump system operated in heating modes," Energy, Elsevier, vol. 149(C), pages 173-189.
    7. Bae, Sangmu & Nam, Yujin, 2022. "Feasibility analysis for an integrated system using photovoltaic-thermal and ground source heat pump based on real-scale experiment," Renewable Energy, Elsevier, vol. 185(C), pages 1152-1166.
    8. Qi, Zihao & Cai, Yingling & Cui, Yunxiang, 2024. "Study on optimization of winter operation characteristics of solar-ground source heat pump in Shanghai," Renewable Energy, Elsevier, vol. 220(C).
    9. Reda, Francesco & Arcuri, Natale & Loiacono, Pasquale & Mazzeo, Domenico, 2015. "Energy assessment of solar technologies coupled with a ground source heat pump system for residential energy supply in Southern European climates," Energy, Elsevier, vol. 91(C), pages 294-305.
    10. Guo, Xiaochao & Zhang, Jili & Han, Youhua, 2024. "Thermoelectric performance analysis of the novel direct-expansion photovoltaic thermal heat pump/power heat pipe compound cycle system in summer," Applied Energy, Elsevier, vol. 362(C).
    11. Guo, Xiaochao & Zhang, Jili & Wang, Zicheng, 2024. "Feasibility and performance study on the novel photovoltaic thermal heat pipe/heat pump composite cycle trigeneration system in summer," Renewable Energy, Elsevier, vol. 228(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Weibo & Zhang, Heng & Liang, Xingfu, 2018. "Experimental performance evaluation and parametric study of a solar-ground source heat pump system operated in heating modes," Energy, Elsevier, vol. 149(C), pages 173-189.
    2. Chen, Haifei & Li, Xulei & Gao, Jian & Cao, Jingyu & Dong, Hao & Wang, Wenjie & Chen, Yawei, 2025. "Comparative study on a solar-assisted ground source heat pump with CPC solar collector and phase change heat storage," Renewable Energy, Elsevier, vol. 239(C).
    3. Bae, Sangmu & Choi, Hyun-Jung & Choi, Gyeong-Seok & Chae, Hobyung & Nam, Yujin, 2025. "Energy, economic, and environmental analysis of cost-effective renewable hybrid system with prefabrication technologies," Renewable Energy, Elsevier, vol. 238(C).
    4. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part-B: Applications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 124-155.
    5. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    6. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    7. Naili, Nabiha & Kooli, Sami, 2021. "Solar-assisted ground source heat pump system operated in heating mode: A case study in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    8. Xi, Chen & Hongxing, Yang & Lin, Lu & Jinggang, Wang & Wei, Liu, 2011. "Experimental studies on a ground coupled heat pump with solar thermal collectors for space heating," Energy, Elsevier, vol. 36(8), pages 5292-5300.
    9. Bae, Sangmu & Chae, Hobyung & Nam, Yujin, 2023. "Experimental analysis of an integrated system using photovoltaic–thermal and air source heat pump for real applications," Renewable Energy, Elsevier, vol. 217(C).
    10. Biglarian, Hassan & Abdollahi, Sina, 2022. "Utilization of on-grid photovoltaic panels to offset electricity consumption of a residential ground source heat pump," Energy, Elsevier, vol. 243(C).
    11. You, Tian & Wu, Wei & Shi, Wenxing & Wang, Baolong & Li, Xianting, 2016. "An overview of the problems and solutions of soil thermal imbalance of ground-coupled heat pumps in cold regions," Applied Energy, Elsevier, vol. 177(C), pages 515-536.
    12. Paul Christodoulides & Christakis Christou & Georgios A. Florides, 2024. "Ground Source Heat Pumps in Buildings Revisited and Prospects," Energies, MDPI, vol. 17(13), pages 1-36, July.
    13. Li, Yufan & Bi, Yuehong & Lin, Yashan & Wang, Hongyan & Sun, Ruirui, 2023. "Analysis of the soil heat balance of a solar-ground source absorption heat pump with the soil-based energy storage in the transition season," Energy, Elsevier, vol. 264(C).
    14. Ushamah, Hafiz Muhammad & Ahmed, Naveed & Elfeky, K.E. & Mahmood, Mariam & Qaisrani, Mumtaz A. & Waqas, Adeel & Zhang, Qian, 2022. "Techno-economic analysis of a hybrid district heating with borehole thermal storage for various solar collectors and climate zones in Pakistan," Renewable Energy, Elsevier, vol. 199(C), pages 1639-1656.
    15. You, Tian & Wu, Wei & Yang, Hongxing & Liu, Jiankun & Li, Xianting, 2021. "Hybrid photovoltaic/thermal and ground source heat pump: Review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    16. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2014. "A study on energy and CO2 saving potential of ground source heat pump system in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 278-293.
    17. Hongkyo Kim & Yujin Nam & Sangmu Bae & Soolyeon Cho, 2020. "Study on the Performance of Multiple Sources and Multiple Uses Heat Pump System in Three Different Cities," Energies, MDPI, vol. 13(19), pages 1-17, October.
    18. Roselli, C. & Diglio, G. & Sasso, M. & Tariello, F., 2019. "A novel energy index to assess the impact of a solar PV-based ground source heat pump on the power grid," Renewable Energy, Elsevier, vol. 143(C), pages 488-500.
    19. Shah, Sheikh Khaleduzzaman & Aye, Lu & Rismanchi, Behzad, 2018. "Seasonal thermal energy storage system for cold climate zones: A review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 38-49.
    20. Reda, Francesco & Fatima, Zarrin, 2019. "Northern European nearly zero energy building concepts for apartment buildings using integrated solar technologies and dynamic occupancy profile: Focus on Finland and other Northern European countries," Applied Energy, Elsevier, vol. 237(C), pages 598-617.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225012988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.