IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v322y2025ics0360544225012149.html
   My bibliography  Save this article

Enhancing grid integration of renewable energy sources for micro grid stability using forecasting and optimal dispatch strategies

Author

Listed:
  • Kumar, S. Senthil
  • Srinivasan, C.
  • Balavignesh, S.

Abstract

The intermittent nature of Renewable Energy Sources (RES) presents a major challenge to grid stability. Unlike conventional energy sources such as fossil fuels, RES generation is influenced by factors like weather conditions and time of day, leading to unpredictable fluctuations. This unpredictability can cause imbalances between supply and demand, potentially compromising grid stability and reliability. To address this issue, this research proposes a framework for the optimal management of microgrids, consisting of three key stages: forecasting, optimal dispatch, and management planning. The framework begins with power generation and load forecasts using the Extended Neural Basis Expansion Analysis (ExN-BEATS) model. The forecasting results serve as inputs for an optimization model that incorporates decision variables for generating units, energy storage system (ESS) charge/discharge plans, and power exchange. The optimization model aims to minimize operating costs while respecting technical and operational constraints. The Mutated Bald Eagle Optimization (MBEO) algorithm, inspired by the hunting behavior of eagles, is introduced to efficiently optimize the control of generators, ESS, and power exchange. The load forecasting analysis demonstrated that the ExN-BEATS model outperformed existing models, achieving an MAE of 5.3 kW, MAPE of 1.5 %, and RMSE of 6.9 kW, making it the most accurate for predicting load consumption. Furthermore, three load dispatch cases were analyzed, including the integration of EVs and ESS. The addition of ESS shifted the grid's peak load to off-peak hours, improving grid stability. In Cases 2 and 3, coordinated EV charging and discharging led to further cost reductions. To evaluate the optimization performance, Hypervolume (HV) was used as the primary metric, and the MBEO algorithm achieved the highest HV score of 0.9635, indicating superior trade-offs between objectives. Overall, the proposed framework, combining ExN-BEATS for forecasting and MBEO for optimal dispatch, demonstrates exceptional accuracy, efficiency, and cost-effectiveness in managing microgrid resources, highlighting the practical benefits of advanced forecasting and optimization techniques for real-world applications.

Suggested Citation

  • Kumar, S. Senthil & Srinivasan, C. & Balavignesh, S., 2025. "Enhancing grid integration of renewable energy sources for micro grid stability using forecasting and optimal dispatch strategies," Energy, Elsevier, vol. 322(C).
  • Handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225012149
    DOI: 10.1016/j.energy.2025.135572
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225012149
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135572?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    2. Zhen, Hao & Niu, Dongxiao & Wang, Keke & Shi, Yucheng & Ji, Zhengsen & Xu, Xiaomin, 2021. "Photovoltaic power forecasting based on GA improved Bi-LSTM in microgrid without meteorological information," Energy, Elsevier, vol. 231(C).
    3. Arash Moradzadeh & Sahar Zakeri & Maryam Shoaran & Behnam Mohammadi-Ivatloo & Fazel Mohammadi, 2020. "Short-Term Load Forecasting of Microgrid via Hybrid Support Vector Regression and Long Short-Term Memory Algorithms," Sustainability, MDPI, vol. 12(17), pages 1-17, August.
    4. Md. Fatin Ishraque & Sk. A. Shezan & Md. Sohel Rana & S. M. Muyeen & Akhlaqur Rahman & Liton Chandra Paul & Md. Shafiul Islam, 2021. "Optimal Sizing and Assessment of a Renewable Rich Standalone Hybrid Microgrid Considering Conventional Dispatch Methodologies," Sustainability, MDPI, vol. 13(22), pages 1-23, November.
    5. Thibaut Th'eate & Damien Ernst, 2020. "An Application of Deep Reinforcement Learning to Algorithmic Trading," Papers 2004.06627, arXiv.org, revised Oct 2020.
    6. Aslam Amir & Hussain Shareef & Falah Awwad, 2023. "Energy Management in a Standalone Microgrid: A Split-Horizon Dual-Stage Dispatch Strategy," Energies, MDPI, vol. 16(8), pages 1-25, April.
    7. Mitrentsis, Georgios & Lens, Hendrik, 2022. "An interpretable probabilistic model for short-term solar power forecasting using natural gradient boosting," Applied Energy, Elsevier, vol. 309(C).
    8. Ahmad, Tanveer & Zhang, Dongdong, 2022. "A data-driven deep sequence-to-sequence long-short memory method along with a gated recurrent neural network for wind power forecasting," Energy, Elsevier, vol. 239(PB).
    9. Fatin Ishraque, Md. & Shezan, Sk. A. & Ali, M.M. & Rashid, M.M., 2021. "Optimization of load dispatch strategies for an islanded microgrid connected with renewable energy sources," Applied Energy, Elsevier, vol. 292(C).
    10. Houben, Nikolaus & Cosic, Armin & Stadler, Michael & Mansoor, Muhammad & Zellinger, Michael & Auer, Hans & Ajanovic, Amela & Haas, Reinhard, 2023. "Optimal dispatch of a multi-energy system microgrid under uncertainty: A renewable energy community in Austria," Applied Energy, Elsevier, vol. 337(C).
    11. Su-Chang Lim & Jun-Ho Huh & Seok-Hoon Hong & Chul-Young Park & Jong-Chan Kim, 2022. "Solar Power Forecasting Using CNN-LSTM Hybrid Model," Energies, MDPI, vol. 15(21), pages 1-17, November.
    12. Abdallah Abdellatif & Hamza Mubarak & Shameem Ahmad & Tofael Ahmed & G. M. Shafiullah & Ahmad Hammoudeh & Hamdan Abdellatef & M. M. Rahman & Hassan Muwafaq Gheni, 2022. "Forecasting Photovoltaic Power Generation with a Stacking Ensemble Model," Sustainability, MDPI, vol. 14(17), pages 1-21, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Yisheng & Liu, Gang & Luo, Donghua & Bavirisetti, Durga Prasad & Xiao, Gang, 2023. "Multi-timescale photovoltaic power forecasting using an improved Stacking ensemble algorithm based LSTM-Informer model," Energy, Elsevier, vol. 283(C).
    2. Li, Yifan & Liu, Gang & Cao, Yisheng & Chen, Jiawei & Gang, Xiao & Tang, Jianchao, 2025. "WNPS-LSTM-Informer: A Hybrid Stacking model for medium-term photovoltaic power forecasting with ranked feature selection," Renewable Energy, Elsevier, vol. 244(C).
    3. Tahir, Muhammad Faizan & Yousaf, Muhammad Zain & Tzes, Anthony & El Moursi, Mohamed Shawky & El-Fouly, Tarek H.M., 2024. "Enhanced solar photovoltaic power prediction using diverse machine learning algorithms with hyperparameter optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    4. Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
    5. Hui Huang & Qiliang Zhu & Xueling Zhu & Jinhua Zhang, 2023. "An Adaptive, Data-Driven Stacking Ensemble Learning Framework for the Short-Term Forecasting of Renewable Energy Generation," Energies, MDPI, vol. 16(4), pages 1-20, February.
    6. Konduru Sudharshan & C. Naveen & Pradeep Vishnuram & Damodhara Venkata Siva Krishna Rao Kasagani & Benedetto Nastasi, 2022. "Systematic Review on Impact of Different Irradiance Forecasting Techniques for Solar Energy Prediction," Energies, MDPI, vol. 15(17), pages 1-39, August.
    7. Hui Wang & Su Yan & Danyang Ju & Nan Ma & Jun Fang & Song Wang & Haijun Li & Tianyu Zhang & Yipeng Xie & Jun Wang, 2023. "Short-Term Photovoltaic Power Forecasting Based on a Feature Rise-Dimensional Two-Layer Ensemble Learning Model," Sustainability, MDPI, vol. 15(21), pages 1-26, November.
    8. Hiroki Yamamoto & Junji Kondoh & Daisuke Kodaira, 2022. "Assessing the Impact of Features on Probabilistic Modeling of Photovoltaic Power Generation," Energies, MDPI, vol. 15(15), pages 1-17, July.
    9. Lin, Huapeng & Gao, Liyuan & Cui, Mingtao & Liu, Hengchao & Li, Chunyang & Yu, Miao, 2025. "Short-term distributed photovoltaic power prediction based on temporal self-attention mechanism and advanced signal decomposition techniques with feature fusion," Energy, Elsevier, vol. 315(C).
    10. Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2022. "Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    11. Huang, Xiaoqiao & Li, Qiong & Tai, Yonghang & Chen, Zaiqing & Liu, Jun & Shi, Junsheng & Liu, Wuming, 2022. "Time series forecasting for hourly photovoltaic power using conditional generative adversarial network and Bi-LSTM," Energy, Elsevier, vol. 246(C).
    12. Huang, Congzhi & Yang, Mengyuan, 2023. "Memory long and short term time series network for ultra-short-term photovoltaic power forecasting," Energy, Elsevier, vol. 279(C).
    13. Zhu, Jianhua & He, Yaoyao, 2025. "A novel hybrid model based on evolving multi-quantile long and short-term memory neural network for ultra-short-term probabilistic forecasting of photovoltaic power," Applied Energy, Elsevier, vol. 377(PC).
    14. Md. Fatin Ishraque & Akhlaqur Rahman & Sk. A. Shezan & GM Shafiullah, 2022. "Operation and Assessment of a Microgrid for Maldives: Islanded and Grid-Tied Mode," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    15. Song, Zhe & Cao, Sunliang & Yang, Hongxing, 2023. "Assessment of solar radiation resource and photovoltaic power potential across China based on optimized interpretable machine learning model and GIS-based approaches," Applied Energy, Elsevier, vol. 339(C).
    16. liu, Qian & li, Yulin & jiang, Hang & chen, Yilin & zhang, Jiang, 2024. "Short-term photovoltaic power forecasting based on multiple mode decomposition and parallel bidirectional long short term combined with convolutional neural networks," Energy, Elsevier, vol. 286(C).
    17. Arooj, Qumrish, 2024. "FedWindT: Federated learning assisted transformer architecture for collaborative and secure wind power forecasting in diverse conditions," Energy, Elsevier, vol. 309(C).
    18. Izabela Rojek & Dariusz Mikołajewski & Adam Mroziński & Marek Macko, 2023. "Machine Learning- and Artificial Intelligence-Derived Prediction for Home Smart Energy Systems with PV Installation and Battery Energy Storage," Energies, MDPI, vol. 16(18), pages 1-26, September.
    19. Md. Fatin Ishraque & Akhlaqur Rahman & Sk. A. Shezan & S. M. Muyeen, 2022. "Grid Connected Microgrid Optimization and Control for a Coastal Island in the Indian Ocean," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
    20. Zhang, Ruoyang & Wu, Yu & Zhang, Lei & Xu, Chongbin & Wang, ZeYu & Zhang, Yanfeng & Sun, Xiaomin & Zuo, Xin & Wu, Yuhan & Chen, Qian, 2025. "A multiscale network with mixed features and extended regional weather forecasts for predicting short-term photovoltaic power," Energy, Elsevier, vol. 318(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225012149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.