IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v322y2025ics0360544225011867.html
   My bibliography  Save this article

Nuclear—thermal energy storage configurations for industrial combined heat and power supply—conceptual and thermodynamic study with high temperature gas-cooled reactor

Author

Listed:
  • Novotný, Václav
  • Kim, Junyung
  • Cho, So-Bin
  • Saeed, Rami M.

Abstract

Nuclear systems are promising candidates for delivering resilient heat and power for future energy security and independence. Traditionally, nuclear plants have been used for baseload electricity production and cogeneration of heat has seen relatively limited application utilizing typically only small portion of a reactor's thermal output. This paradigm may shift due to the increasing penetration of intermittent renewables and need for resource flexibility, various decarbonization efforts aimed at both electricity and heat demands, along with the perspective of small modular nuclear reactor applications, which can be sized based on local industrial needs. This study provides a comprehensive guide for the nuclear and industrial sectors, emphasizing controllability in the combined heat and power configuration options for high temperature gas-cooled reactor and process steam supply. It investigates the integration of thermal energy storage to improve nuclear energy's responsiveness to varying industrial demands. The study emphasizes placing thermal energy storage between the nuclear primary loop and steam cycle to achieve greater efficiency and flexibility in power and heat output, surpassing traditional combined heat and power systems and avoiding efficiency losses seen in other thermal energy storage integration approaches.

Suggested Citation

  • Novotný, Václav & Kim, Junyung & Cho, So-Bin & Saeed, Rami M., 2025. "Nuclear—thermal energy storage configurations for industrial combined heat and power supply—conceptual and thermodynamic study with high temperature gas-cooled reactor," Energy, Elsevier, vol. 322(C).
  • Handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225011867
    DOI: 10.1016/j.energy.2025.135544
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225011867
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135544?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Stephen Hancock & Tyler Westover, 2022. "Simulation of 15% and 50% Thermal Power Dispatch to an Industrial Facility Using a Flexible Generic Full-Scope Pressurized Water Reactor Plant Simulator," Energies, MDPI, vol. 15(3), pages 1-15, February.
    2. Chen, Jiayang & Zheng, Wen & Kong, Ying & Yang, Xiaolin & Liu, Zhaoyang & Xia, Jianjun, 2021. "Case study on combined heat and water system for nuclear district heating in Jiaodong Peninsula," Energy, Elsevier, vol. 218(C).
    3. Lin, Yaxue & Alva, Guruprasad & Fang, Guiyin, 2018. "Review on thermal performances and applications of thermal energy storage systems with inorganic phase change materials," Energy, Elsevier, vol. 165(PA), pages 685-708.
    4. Kang, Seong Woo & Yim, Man-Sung, 2023. "Coupled system model analysis for a small modular reactor cogeneration (combined heat and power) application," Energy, Elsevier, vol. 262(PA).
    5. Leurent, Martin & Jasserand, Frédéric & Locatelli, Giorgio & Palm, Jenny & Rämä, Miika & Trianni, Andrea, 2017. "Driving forces and obstacles to nuclear cogeneration in Europe: Lessons learnt from Finland," Energy Policy, Elsevier, vol. 107(C), pages 138-150.
    6. Sciacovelli, A. & Vecchi, A. & Ding, Y., 2017. "Liquid air energy storage (LAES) with packed bed cold thermal storage – From component to system level performance through dynamic modelling," Applied Energy, Elsevier, vol. 190(C), pages 84-98.
    7. Dong, Zhe & Li, Bowen & Li, Junyi & Guo, Zhiwu & Huang, Xiaojin & Zhang, Yajun & Zhang, Zuoyi, 2021. "Flexible control of nuclear cogeneration plants for balancing intermittent renewables," Energy, Elsevier, vol. 221(C).
    8. Gulfam, Raza & Zhang, Peng & Meng, Zhaonan, 2019. "Advanced thermal systems driven by paraffin-based phase change materials – A review," Applied Energy, Elsevier, vol. 238(C), pages 582-611.
    9. Anastasovski, Aleksandar, 2023. "What is needed for transformation of industrial parks into potential positive energy industrial parks? A review," Energy Policy, Elsevier, vol. 173(C).
    10. Vaclav Novotny & Vit Basta & Petr Smola & Jan Spale, 2022. "Review of Carnot Battery Technology Commercial Development," Energies, MDPI, vol. 15(2), pages 1-33, January.
    11. Sihvonen, Ville & Ollila, Iisa & Jaanto, Jasmin & Grönman, Aki & Honkapuro, Samuli & Riikonen, Juhani & Price, Alisdair, 2024. "Role of power-to-heat and thermal energy storage in decarbonization of district heating," Energy, Elsevier, vol. 305(C).
    12. Knobloch, Kai & Muhammad, Yousif & Costa, Marta Soler & Moscoso, Fabrizio Mayta & Bahl, Christian & Alm, Ole & Engelbrecht, Kurt, 2022. "A partially underground rock bed thermal energy storage with a novel air flow configuration," Applied Energy, Elsevier, vol. 315(C).
    13. Dahash, Abdulrahman & Ochs, Fabian & Janetti, Michele Bianchi & Streicher, Wolfgang, 2019. "Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems," Applied Energy, Elsevier, vol. 239(C), pages 296-315.
    14. Saari, Jussi & Kozlova, Mariia & Suikkanen, Heikki & Sermyagina, Ekaterina & Hyvärinen, Juhani & Yeomans, Julian Scott, 2024. "Global sensitivity analysis of nuclear district heating reactor primary heat exchanger and pressure vessel optimization," Energy, Elsevier, vol. 312(C).
    15. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    16. Kosman, Wojciech & Rusin, Andrzej & Reichel, Piotr, 2023. "Application of an energy storage system with molten salt to a steam turbine cycle to decrease the minimal acceptable load," Energy, Elsevier, vol. 266(C).
    17. Wu, Qingyang & Li, Gen & Liu, Ming & Zhang, Yufeng & Yan, Junjie & Deguchi, Yoshihiro, 2024. "The enhancement of primary frequency regulation ability of combined water and power plant based on nuclear energy: Dynamic modelling and control strategy optimization," Energy, Elsevier, vol. 313(C).
    18. Rämä, Miika & Leurent, Martin & Devezeaux de Lavergne, Jean-Guy, 2020. "Flexible nuclear co-generation plant combined with district heating and a large-scale heat storage," Energy, Elsevier, vol. 193(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guobin Jia & Guifeng Zhu & Yang Zou & Yuwen Ma & Ye Dai & Jianhui Wu & Jian Tian, 2025. "Economic Analysis of Nuclear Energy Cogeneration: A Comprehensive Review on Integrated Utilization," Energies, MDPI, vol. 18(11), pages 1-26, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ru & Qiu, Leilei & Sun, Peiwei & Wei, Xinyu, 2024. "Research on nuclear reactor power control system of VVER-1000 with thermal energy supply system," Energy, Elsevier, vol. 294(C).
    2. Dong, Duo & Guan, Jingyu & Wang, Ziqi & Wang, Yuqi, 2025. "Current status and trends of nuclear energy under carbon neutrality conditions in China," Energy, Elsevier, vol. 314(C).
    3. Kang, Seong Woo & Yim, Man-Sung, 2023. "Coupled system model analysis for a small modular reactor cogeneration (combined heat and power) application," Energy, Elsevier, vol. 262(PA).
    4. Zhang, Shi-guang & Zhang, Hao & Xi, Xin-ming & Li, Bao-rang, 2025. "A review of design considerations and performance enhancement techniques for thermocline thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    5. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. Zhao, B.C. & Wang, R.Z., 2019. "Perspectives for short-term thermal energy storage using salt hydrates for building heating," Energy, Elsevier, vol. 189(C).
    7. Chen, Jiayang & Zheng, Wen & Kong, Ying & Yang, Xiaolin & Liu, Zhaoyang & Xia, Jianjun, 2021. "Case study on combined heat and water system for nuclear district heating in Jiaodong Peninsula," Energy, Elsevier, vol. 218(C).
    8. Saleh Abushamah, Hussein Abdulkareem & Skoda, Radek, 2022. "Nuclear energy for district cooling systems – Novel approach and its eco-environmental assessment method," Energy, Elsevier, vol. 250(C).
    9. Prakash, Jyoti & Roan, Daryn & Tauqir, Wajeha & Nazir, Hassan & Ali, Majid & Kannan, Arunachala, 2019. "Off-grid solar thermal water heating system using phase-change materials: design, integration and real environment investigation," Applied Energy, Elsevier, vol. 240(C), pages 73-83.
    10. Guobin Jia & Guifeng Zhu & Yang Zou & Yuwen Ma & Ye Dai & Jianhui Wu & Jian Tian, 2025. "Economic Analysis of Nuclear Energy Cogeneration: A Comprehensive Review on Integrated Utilization," Energies, MDPI, vol. 18(11), pages 1-26, June.
    11. Liang, Ting & Vecchi, Andrea & Knobloch, Kai & Sciacovelli, Adriano & Engelbrecht, Kurt & Li, Yongliang & Ding, Yulong, 2022. "Key components for Carnot Battery: Technology review, technical barriers and selection criteria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    12. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    13. Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
    14. Sihvonen, Ville & Ollila, Iisa & Jaanto, Jasmin & Grönman, Aki & Honkapuro, Samuli & Riikonen, Juhani & Price, Alisdair, 2024. "Role of power-to-heat and thermal energy storage in decarbonization of district heating," Energy, Elsevier, vol. 305(C).
    15. Heo, SungKu & Byun, Jaewon & Ifaei, Pouya & Ko, Jaerak & Ha, Byeongmin & Hwangbo, Soonho & Yoo, ChangKyoo, 2024. "Towards mega-scale decarbonized industrial park (Mega-DIP): Generative AI-driven techno-economic and environmental assessment of renewable and sustainable energy utilization in petrochemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    16. Kerschbaum, Alina & Trentmann, Lennart & Hanel, Andreas & Fendt, Sebastian & Spliethoff, Hartmut, 2025. "Methods for analysing renewable energy potentials in energy system modelling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 215(C).
    17. Ai, Wei & Wang, Liang & Lin, Xipeng & Bai, Yakai & Huang, Jingjian & Hu, Jiexiang & Chen, Haisheng, 2024. "Dynamic characteristics of pumped thermal-liquid air energy storage system: Modeling, analysis, and optimization," Energy, Elsevier, vol. 313(C).
    18. Tafone, Alessio & Borri, Emiliano & Cabeza, Luisa F. & Romagnoli, Alessandro, 2021. "Innovative cryogenic Phase Change Material (PCM) based cold thermal energy storage for Liquid Air Energy Storage (LAES) – Numerical dynamic modelling and experimental study of a packed bed unit," Applied Energy, Elsevier, vol. 301(C).
    19. Merad, Faycel & Labar, Hocine & Samira KELAIAIA, Mounia & Necaibia, Salah & Djelailia, Okba, 2019. "A maximum power control based on flexible collector applied to concentrator solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 315-331.
    20. Fan, Xiaoyu & Xu, Hao & Li, Yihong & Li, Junxian & Wang, Zhikang & Gao, Zhaozhao & Ji, Wei & Chen, Liubiao & Wang, Junjie, 2024. "A novel liquid air energy storage system with efficient thermal storage: Comprehensive evaluation of optimal configuration," Applied Energy, Elsevier, vol. 371(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:322:y:2025:i:c:s0360544225011867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.