Emissions and stability characteristics of syngas combustion with swirl and non-swirl micromix configurations
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2025.135497
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Ma, Yujia & Liu, Jinfu & Zhu, Linhai & Li, Qi & Guo, Yaqiong & Liu, Huanpeng & Yu, Daren, 2022. "Multi-objective performance optimization and control for gas turbine Part-load operation Energy-saving and NOx emission reduction," Applied Energy, Elsevier, vol. 320(C).
- Li, Jun & Huang, Hongyu & Deng, Lisheng & He, Zhaohong & Osaka, Yugo & Kobayashi, Noriyuki, 2019. "Effect of hydrogen addition on combustion and heat release characteristics of ammonia flame," Energy, Elsevier, vol. 175(C), pages 604-617.
- Zhang, Yu & Huang, Ronghua & Huang, Sheng & Zhou, Pei & Rao, Xiaoxuan & Zhang, Guojun & Qiu, Liang, 2021. "Experimental study on puffing, auto-ignition and combustion characteristics of an n-pentanol-diesel droplet," Energy, Elsevier, vol. 223(C).
- Lopez-Ruiz, G. & Alava, I. & Blanco, J.M., 2023. "Impact of H2/CH4 blends on the flexibility of micromix burners applied to industrial combustion systems," Energy, Elsevier, vol. 270(C).
- Chen, Mengshi & Zhang, Linyao & Xing, Chang & Bao, Yangyang & Qiu, Penghua & Zhang, Wenda & Sun, Shaozeng & Zhao, Yijun, 2024. "Experimental and numerical simulation study of the effect of mixing on the characteristics of swirl/non-swirl micromix flames," Energy, Elsevier, vol. 307(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Akram, M. Zuhaib, 2021. "Study of hydrogen impact on lean flammability limit and burning characteristics of a kerosene surrogate," Energy, Elsevier, vol. 231(C).
- Cai, Tao & Zhao, Dan & Chan, Siew Hwa & Shahsavari, Mohammad, 2022. "Tailoring reduced mechanisms for predicting flame propagation and ignition characteristics in ammonia and ammonia/hydrogen mixtures," Energy, Elsevier, vol. 260(C).
- Liu, Shang & Lin, Zhelong & Zhang, Hao & Lei, Nuo & Qi, Yunliang & Wang, Zhi, 2023. "Impact of ammonia addition on knock resistance and combustion performance in a gasoline engine with high compression ratio," Energy, Elsevier, vol. 262(PA).
- Jiashuo Cui & Rongguo Yu & Huishe Wang & Yangen Wang & Jingze Tong, 2025. "A Comparative Study of Methanol and Methane Combustion in a Gas Turbine Combustor," Energies, MDPI, vol. 18(7), pages 1-17, April.
- Lee, Taewoo & Lee, Sangyoon & Tsang, Yiu Fai & Kwon, Eilhann E., 2025. "Carbon-negative power generation using syngas produced from CO2-cofeeding pyrolysis of lignocellulosic biomass," Energy, Elsevier, vol. 325(C).
- Liang, He & Yan, Xingqing & Shi, Enhua & Wang, Xinfei & Qi, Chang & Ding, Jianfei & Zhang, Lianzhuo & Chen, Lei & Lv, Xianshu & Yu, Jianliang, 2024. "Effect of hydrogen blending on ammonia/air explosion characteristics under wide equivalence ratio," Energy, Elsevier, vol. 297(C).
- Sharma, Debojit & Lee, Bok Jik & Dash, Sukanta Kumar & Reddy, V. Mahendra, 2023. "Experimental and numerical investigation on ultra-high intensity premixed LPG- air combustion in a novel porous stack burner," Energy, Elsevier, vol. 272(C).
- Liu, Xing & Wang, Ying & Bai, Yuanqi & Yang, Wenxu, 2023. "Development of reduced and optimized mechanism for ammonia/ hydrogen mixture based on genetic algorithm," Energy, Elsevier, vol. 270(C).
- Chen, Mengshi & Zhang, Linyao & Xing, Chang & Bao, Yangyang & Qiu, Penghua & Zhang, Wenda & Sun, Shaozeng & Zhao, Yijun, 2024. "Experimental and numerical simulation study of the effect of mixing on the characteristics of swirl/non-swirl micromix flames," Energy, Elsevier, vol. 307(C).
- Chen, Danan & Li, Jun & Li, Xing & Deng, Lisheng & He, Zhaohong & Huang, Hongyu & Kobayashi, Noriyuki, 2023. "Study on combustion characteristics of hydrogen addition on ammonia flame at a porous burner," Energy, Elsevier, vol. 263(PA).
- Jeong, Ji Hun & Kim, Tong Seop, 2025. "Integrating ammonia cracking with gas turbine combined cycle for enhanced hydrogen utilization and reduced CO2 emissions," Energy, Elsevier, vol. 319(C).
- Kim, Jinyoung & Kim, Donghyun & Park, Sungwoo, 2025. "Numerical investigation of the hydrogen addition effect on NO formation in ammonia/air premixed flames at elevated pressure using an improved reaction mechanism," Energy, Elsevier, vol. 327(C).
- Skabelund, Brent B. & Stechel, Ellen B. & Milcarek, Ryan J., 2023. "Thermodynamic analysis of a gas turbine utilizing ternary CH4/H2/NH3 fuel blends," Energy, Elsevier, vol. 282(C).
- Hookyung Lee & Min-Jung Lee, 2021. "Recent Advances in Ammonia Combustion Technology in Thermal Power Generation System for Carbon Emission Reduction," Energies, MDPI, vol. 14(18), pages 1-29, September.
- Chen, Xuanren & Wang, Hui & Wang, Xiangyu & Liu, Xiang & Zhu, Yuxuan, 2023. "Fuel/air mixing characteristics of a Micromix burner for hydrogen-rich gas turbine," Energy, Elsevier, vol. 282(C).
- Xingyu Sun & Mengjia Li & Jincheng Li & Xiongbo Duan & Can Wang & Weifan Luo & Haifeng Liu & Jingping Liu, 2023. "Nitrogen Oxides and Ammonia Removal Analysis Based on Three-Dimensional Ammonia-Diesel Dual Fuel Engine Coupled with One-Dimensional SCR Model," Energies, MDPI, vol. 16(2), pages 1-18, January.
- Lin, Zhelong & Liu, Shang & Sun, Qiyang & Qi, Yunliang & Wang, Zhi & Li, Jun, 2024. "Effect of injection and ignition strategy on an ammonia direct injection–Hydrogen jet ignition (ADI-HJI) engine," Energy, Elsevier, vol. 306(C).
- Wu, Fang-Hsien & Chen, Guan-Bang, 2020. "Numerical study of hydrogen peroxide enhancement of ammonia premixed flames," Energy, Elsevier, vol. 209(C).
- Ju, Rongyuan & Wang, Jinhua & Zhang, Meng & Mu, Haibao & Zhang, Guanjun & Yu, Jinlu & Huang, Zuohua, 2023. "Stability and emission characteristics of ammonia/air premixed swirling flames with rotating gliding arc discharge plasma," Energy, Elsevier, vol. 277(C).
- Penuela, Javier & Ben, Cécile & Boldyrev, Stepan & Gentzbittel, Laurent & Ouerdane, Henni, 2024. "The indoor agriculture industry: A promising player in demand response services," Applied Energy, Elsevier, vol. 372(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:321:y:2025:i:c:s0360544225011399. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.