IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v321y2025ics0360544225007996.html
   My bibliography  Save this article

Impact of atmospheric stability on wind farm performance: Insights from internal boundary layer dynamics

Author

Listed:
  • Wang, Yan
  • Lu, Pan
  • Zhou, Yongze
  • Ge, Mingwei
  • Li, Rennian

Abstract

The flow characteristics of the atmospheric boundary layer (ABL) and its interactions with wind farms are critical to assessing the aerodynamic performance of wind turbines. In this study, large eddy simulation (LES) was employed to investigate these interactions across different atmospheric stratifications, with a particular focus on the evolution of the internal boundary layer (IBL) and its effects on turbine wake characteristics and overall wind farm performance. The results indicate that the IBL evolves into distinct scenarios depending on the flow field characteristics, which substantially influence the mixing of turbine wakes with background turbulence, ultimately leading to significant sensitivity of wind farm performance to scale variations across different atmospheric stratifications. For wind farms with fewer than nine rows of turbines, power output progressively decreases as atmospheric stratification intensifies. However, once the number of turbine rows reaches ten, power output under stable stratification increases unexpectedly by 1.4% compared to neutral stratification. As the wind farm scale “expands” beyond ten rows, the difference in power output between stable and convective stratification diminishes and may even reverse, until the IBL reaches a fully-developed regime. These findings contribute to resolving the ongoing controversy regarding the effects of atmospheric stability on wind farm power generation.

Suggested Citation

  • Wang, Yan & Lu, Pan & Zhou, Yongze & Ge, Mingwei & Li, Rennian, 2025. "Impact of atmospheric stability on wind farm performance: Insights from internal boundary layer dynamics," Energy, Elsevier, vol. 321(C).
  • Handle: RePEc:eee:energy:v:321:y:2025:i:c:s0360544225007996
    DOI: 10.1016/j.energy.2025.135157
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225007996
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135157?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Huan & Ge, Mingwei & Liu, Yongqian & Yang, Xiang I.A., 2021. "A new coupled model for the equivalent roughness heights of wind farms," Renewable Energy, Elsevier, vol. 171(C), pages 34-46.
    2. Stevens, Richard J.A.M. & Martínez-Tossas, Luis A. & Meneveau, Charles, 2018. "Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments," Renewable Energy, Elsevier, vol. 116(PA), pages 470-478.
    3. Wu, Yu-Ting & Porté-Agel, Fernando, 2015. "Modeling turbine wakes and power losses within a wind farm using LES: An application to the Horns Rev offshore wind farm," Renewable Energy, Elsevier, vol. 75(C), pages 945-955.
    4. Kim, Soo-Hyun & Shin, Hyung-Ki & Joo, Young-Chul & Kim, Keon-Hoon, 2015. "A study of the wake effects on the wind characteristics and fatigue loads for the turbines in a wind farm," Renewable Energy, Elsevier, vol. 74(C), pages 536-543.
    5. Mahdi Abkar & Fernando Porté-Agel, 2013. "The Effect of Free-Atmosphere Stratification on Boundary-Layer Flow and Power Output from Very Large Wind Farms," Energies, MDPI, vol. 6(5), pages 1-24, April.
    6. Kim, Dae-Young & Kim, Bum-Suk, 2022. "Differences in wind farm energy production based on the atmospheric stability dissipation rate: Case study of a 30 MW onshore wind farm," Energy, Elsevier, vol. 239(PE).
    7. Tian, Linlin & Song, Yilei & Zhao, Ning & Shen, Wenzhong & Wang, Tongguang & Zhu, Chunling, 2020. "Numerical investigations into the idealized diurnal cycle of atmospheric boundary layer and its impact on wind turbine's power performance," Renewable Energy, Elsevier, vol. 145(C), pages 419-427.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tristan Revaz & Fernando Porté-Agel, 2021. "Large-Eddy Simulation of Wind Turbine Flows: A New Evaluation of Actuator Disk Models," Energies, MDPI, vol. 14(13), pages 1-22, June.
    2. Eidi, Ali & Ghiassi, Reza & Yang, Xiang & Abkar, Mahdi, 2021. "Model-form uncertainty quantification in RANS simulations of wakes and power losses in wind farms," Renewable Energy, Elsevier, vol. 179(C), pages 2212-2223.
    3. Souaiby, Marwa & Porté-Agel, Fernando, 2024. "An improved analytical framework for flow prediction inside and downstream of wind farms," Renewable Energy, Elsevier, vol. 225(C).
    4. Hegazy, Amr & Blondel, Frédéric & Cathelain, Marie & Aubrun, Sandrine, 2022. "LiDAR and SCADA data processing for interacting wind turbine wakes with comparison to analytical wake models," Renewable Energy, Elsevier, vol. 181(C), pages 457-471.
    5. Pérez Albornoz, C. & Escalante Soberanis, M.A. & Ramírez Rivera, V. & Rivero, M., 2022. "Review of atmospheric stability estimations for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    6. Jagdeep Singh & Jahrul M Alam, 2023. "Large-Eddy Simulation of Utility-Scale Wind Farm Sited over Complex Terrain," Energies, MDPI, vol. 16(16), pages 1-26, August.
    7. Ka Ling Wu & Fernando Porté-Agel, 2017. "Flow Adjustment Inside and Around Large Finite-Size Wind Farms," Energies, MDPI, vol. 10(12), pages 1-23, December.
    8. Zhang, Jincheng & Zhao, Xiaowei, 2020. "A novel dynamic wind farm wake model based on deep learning," Applied Energy, Elsevier, vol. 277(C).
    9. Fan, Shuanglong & Liu, Zhenqing, 2023. "Proposal of fully-coupled actuated disk model for wind turbine operation modeling in turbulent flow field due to complex topography," Energy, Elsevier, vol. 284(C).
    10. Dhiman, Harsh S. & Deb, Dipankar & Foley, Aoife M., 2020. "Bilateral Gaussian Wake Model Formulation for Wind Farms: A Forecasting based approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    11. Amin Niayifar & Fernando Porté-Agel, 2016. "Analytical Modeling of Wind Farms: A New Approach for Power Prediction," Energies, MDPI, vol. 9(9), pages 1-13, September.
    12. Shid-Moosavi, Sina & Di Cioccio, Fabrizio & Haghi, Rad & Tronci, Eleonora Maria & Moaveni, Babak & Liberatore, Sauro & Hines, Eric, 2025. "Modeling and experimentally-driven sensitivity analysis of wake-induced power loss in offshore wind farms: Insights from Block Island Wind Farm," Renewable Energy, Elsevier, vol. 241(C).
    13. Pin Lyu & Wen-Li Chen & Hui Li & Lian Shen, 2019. "A Numerical Study on the Development of Self-Similarity in a Wind Turbine Wake Using an Improved Pseudo-Spectral Large-Eddy Simulation Solver," Energies, MDPI, vol. 12(4), pages 1-24, February.
    14. Amarloo, Ali & Zehtabiyan-Rezaie, Navid & Abkar, Mahdi, 2024. "A progressive data-augmented RANS model for enhanced wind-farm simulations," Energy, Elsevier, vol. 313(C).
    15. Jia, Rui & Ge, Mingwei & Zhang, Ziliang & Li, Xintao & Du, Bowen, 2024. "A numerical simulation framework for wakes downstream of large wind farms based on equivalent roughness model," Energy, Elsevier, vol. 307(C).
    16. Zehtabiyan-Rezaie, Navid & Abkar, Mahdi, 2024. "An extended k−ɛ model for wake-flow simulation of wind farms," Renewable Energy, Elsevier, vol. 222(C).
    17. Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Experimental investigation of the performance and wake effect of a small-scale wind turbine in a wind tunnel," Energy, Elsevier, vol. 166(C), pages 819-833.
    18. Purohit, Shantanu & Ng, E.Y.K. & Syed Ahmed Kabir, Ijaz Fazil, 2022. "Evaluation of three potential machine learning algorithms for predicting the velocity and turbulence intensity of a wind turbine wake," Renewable Energy, Elsevier, vol. 184(C), pages 405-420.
    19. Deepu Dilip & Fernando Porté-Agel, 2017. "Wind Turbine Wake Mitigation through Blade Pitch Offset," Energies, MDPI, vol. 10(6), pages 1-17, May.
    20. Kang, Yujoo & Kim, Hyebin & Lee, Sang, 2023. "Benefits of individual pitch control on offshore wind turbine submerged in upstream wake," Renewable Energy, Elsevier, vol. 217(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:321:y:2025:i:c:s0360544225007996. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.