IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225010576.html
   My bibliography  Save this article

Amine-based CO2 capture using hollow fiber membrane contactors in a coal-fired power plant: An absorption-desorption-combined plant-scale techno-economic analysis

Author

Listed:
  • Cheng, Zikai
  • Li, Zheng
  • Liu, Pei

Abstract

Amine-based CO2 capture using hollow fiber membrane contactors is a promising technology in coal-fired power plants owing to its smaller volume, investment and energy penalty, but its performance in plant-scale applications and its advantage over the packed-column-based method are unclear. In this work, we develop a model of CO2 capture units using hollow fiber membrane contactors in both absorption and desorption processes, followed by a plant-scale techno-economic analysis in a 650 MW coal-fired power plant. By using hollow fiber membrane contactors instead of packed columns, the lowest CO2 avoidance cost drops by over a half to 36.7 USD/t CO2 whilst CO2 removal efficiency reaches 85 percent. Besides, the corresponding energy penalty drops by around thirty percent to 0.934 MJe/kg CO2. The volume of the hollow fiber membrane contactors in the absorption module is only approximately ten percent of packed-column absorbers, while in the desorption module, it reduces by only six percent compared to packed-column strippers. Improving the durability of polyvinylidene fluoride membranes is a potential method for further cost reduction. If the service life of membranes increases from one year to two or three years, CO2 avoidance cost can drop to 33.2 USD/t CO2 and 32.0 USD/t CO2.

Suggested Citation

  • Cheng, Zikai & Li, Zheng & Liu, Pei, 2025. "Amine-based CO2 capture using hollow fiber membrane contactors in a coal-fired power plant: An absorption-desorption-combined plant-scale techno-economic analysis," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225010576
    DOI: 10.1016/j.energy.2025.135415
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225010576
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135415?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Fu, Hongming & Shen, Yubin & Li, Zhaohao & Zhang, Heng & Chen, Haiping & Gao, Dan, 2023. "CO2 capture using superhydrophobic ceramic membrane: Preparation and performance analysis," Energy, Elsevier, vol. 282(C).
    2. Jin, He & Liu, Pei & Li, Zheng, 2018. "Energy-efficient process intensification for post-combustion CO2 capture: A modeling approach," Energy, Elsevier, vol. 158(C), pages 471-483.
    3. Qi, Run & Li, Zhaohao & Zhang, Hongyuan & Fu, Hongming & Zhang, Heng & Gao, Dan & Chen, Haiping, 2023. "CO2 capture performance of ceramic membrane with superhydrophobic modification based on deposited SiO2 particles," Energy, Elsevier, vol. 283(C).
    4. Putta, Koteswara Rao & Tobiesen, Finn Andrew & Svendsen, Hallvard F. & Knuutila, Hanna K., 2017. "Applicability of enhancement factor models for CO2 absorption into aqueous MEA solutions," Applied Energy, Elsevier, vol. 206(C), pages 765-783.
    5. Li, Kangkang & Leigh, Wardhaugh & Feron, Paul & Yu, Hai & Tade, Moses, 2016. "Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: Techno-economic assessment of the MEA process and its improvements," Applied Energy, Elsevier, vol. 165(C), pages 648-659.
    6. Hosseini-Ardali, Seyed Mohsen & Hazrati-Kalbibaki, Majid & Fattahi, Moslem & Lezsovits, Ferenc, 2020. "Multi-objective optimization of post combustion CO2 capture using methyldiethanolamine (MDEA) and piperazine (PZ) bi-solvent," Energy, Elsevier, vol. 211(C).
    7. Zhao, Chunhao & Wang, Zhengfeng & Gao, Dan & Chen, Haiping & Zhang, Heng, 2022. "Simulation and techno-economic analysis of moisture and heat recovery from original flue gas in coal-fired power plants by macroporous ceramic membrane," Energy, Elsevier, vol. 259(C).
    8. Wu, Xiao & Wang, Meihong & Liao, Peizhi & Shen, Jiong & Li, Yiguo, 2020. "Solvent-based post-combustion CO2 capture for power plants: A critical review and perspective on dynamic modelling, system identification, process control and flexible operation," Applied Energy, Elsevier, vol. 257(C).
    9. Kim, Jinsu & Kim, Jungil & Oh, Hyunmin & Lee, Seokyoung & Lee, In-Beum & Yoon, Young-Seek, 2022. "Techno-economic and environmental impact analysis of tuyere injection of hot reducing gas from low-rank coal gasification in blast furnace," Energy, Elsevier, vol. 241(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Siyue & Feng, Xiao & Wang, Yufei, 2021. "Emergy evaluation of the integrated gasification combined cycle power generation systems with a carbon capture system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    2. Arshad, Nahyan & Alhajaj, Ahmed, 2023. "Process synthesis for amine-based CO2 capture from combined cycle gas turbine power plant," Energy, Elsevier, vol. 274(C).
    3. Lei, Ting & Liang, Youcai & Zhu, Yan & Ye, Kai & Wang, Jianming & Liang, Yaling, 2025. "A novel post-combustion CO2 capture process for natural gas combined cycle power plant based on waste energy utilization and absorption heat transformer," Energy, Elsevier, vol. 316(C).
    4. Otitoju, Olajide & Oko, Eni & Wang, Meihong, 2021. "Technical and economic performance assessment of post-combustion carbon capture using piperazine for large scale natural gas combined cycle power plants through process simulation," Applied Energy, Elsevier, vol. 292(C).
    5. Julio, Alisson Aparecido Vitoriano & Castro-Amoedo, Rafael & Maréchal, François & González, Aldemar Martínez & Escobar Palacio, José Carlos, 2023. "Exergy and economic analysis of the trade-off for design of post-combustion CO2 capture plant by chemical absorption with MEA," Energy, Elsevier, vol. 280(C).
    6. Haider Sultan & Umair Hassan Bhatti & Hafiz Ali Muhammad & Sung Chan Nam & Il Hyun Baek, 2021. "Modification of postcombustion CO2 capture process: A techno‐economic analysis," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(1), pages 165-182, February.
    7. Verhaeghe, Antoine & Dubois, Lionel & Bricteux, Laurent & Thomas, Diane & De Paepe, Ward, 2025. "Absorption-based carbon capture energy penalty reduction for low CO2 content applications: Comparison of performance using different solvents and process configurations on micro gas turbine applicatio," Energy, Elsevier, vol. 322(C).
    8. Song He & Yawen Zheng, 2024. "CO 2 Capture Cost Reduction Potential of the Coal-Fired Power Plants under High Penetration of Renewable Power in China," Energies, MDPI, vol. 17(9), pages 1-15, April.
    9. Li, Jixin & Luo, Qiwei & Jiang, Jintao & Xiang, Wenguo & Chen, Shiyi, 2025. "Techno-economic assessment and optimization of PZ/MDEA-based CO2 capture for coal-fired power plant," Energy, Elsevier, vol. 327(C).
    10. Guo, Liheng & Ding, Yudong & Liao, Qiang & Zhu, Xun & Wang, Hong, 2022. "A new heat supply strategy for CO2 capture process based on the heat recovery from turbine exhaust steam in a coal-fired power plant," Energy, Elsevier, vol. 239(PA).
    11. Wilkes, Mathew Dennis & Mukherjee, Sanjay & Brown, Solomon, 2021. "Transient CO2 capture for open-cycle gas turbines in future energy systems," Energy, Elsevier, vol. 216(C).
    12. Xiao, Min & Zheng, Wenchao & Liu, Helei & Luo, Xiao & Gao, Hongxia & Liang, Zhiwu, 2021. "Thermodynamic analysis of carbamate formation and carbon dioxide absorption in N-methylaminoethanol solution," Applied Energy, Elsevier, vol. 281(C).
    13. Shamsi, Mohammad & Naeiji, Esfandiyar & Rooeentan, Saeed & Shahandashty, Behnam Fayyaz & Namegoshayfard, Parham & Bonyadi, Mohammad, 2023. "Proposal and investigation of CO2 capture from fired heater flue gases to increase methanol production: A case study," Energy, Elsevier, vol. 274(C).
    14. Solomon Aforkoghene Aromada & Nils Henrik Eldrup & Fredrik Normann & Lars Erik Øi, 2020. "Techno-Economic Assessment of Different Heat Exchangers for CO 2 Capture," Energies, MDPI, vol. 13(23), pages 1-27, November.
    15. Xiao, Liehui & Ning, Zhuo & Chen, Bin & Chen, Jie-Chao & Yuan, Wu-Zhi & Huang, Si-Min, 2025. "Exergy and coupled system analysis of hydrophilic polymeric membrane condenser in coal-fired power plants," Energy, Elsevier, vol. 314(C).
    16. Isogai, Hirotaka & Nakagaki, Takao, 2024. "Power-to-heat amine-based post-combustion CO2 capture system with solvent storage utilizing fluctuating electricity prices," Applied Energy, Elsevier, vol. 368(C).
    17. Li, Long & Liu, Weizao & Qin, Zhifeng & Zhang, Guoquan & Yue, Hairong & Liang, Bin & Tang, Shengwei & Luo, Dongmei, 2021. "Research on integrated CO2 absorption-mineralization and regeneration of absorbent process," Energy, Elsevier, vol. 222(C).
    18. Tu, Te & Yang, Xing & Cui, Qiufang & Shang, Yu & Yan, Shuiping, 2022. "CO2 regeneration energy requirement of carbon capture process with an enhanced waste heat recovery from stripped gas by advanced transport membrane condenser," Applied Energy, Elsevier, vol. 323(C).
    19. Xie, Heping & Wu, Yifan & Liu, Tao & Wang, Fuhuan & Chen, Bin & Liang, Bin, 2020. "Low-energy-consumption electrochemical CO2 capture driven by biomimetic phenazine derivatives redox medium," Applied Energy, Elsevier, vol. 259(C).
    20. Wu, Xiao & Wang, Meihong & Lee, Kwang Y., 2020. "Flexible operation of supercritical coal-fired power plant integrated with solvent-based CO2 capture through collaborative predictive control," Energy, Elsevier, vol. 206(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225010576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.