IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225009648.html
   My bibliography  Save this article

Effect of particle size distribution of nanoadditives in Titania-laden diesel fuel on the fine and ultrafine particulate emissions

Author

Listed:
  • Jain, Akshat
  • Ambekar, Anirudha
  • Thajudeen, Thaseem

Abstract

The present study comprehensively investigates the influence of the size of Titania (TiO2) nanoadditives and their dispersibility in diesel on the emission characteristics and performance parameters of a compression ignition engine. Although nanoadditives consistently resulted in improved engine characteristics, including brake thermal efficiency, the improvement declined substantially over time due to nanofuel aging. Dispersibility of nanoadditives in the fuel was significantly improved for ball-milled nanofuels, with results showing substantially better engine performance characteristics for 15-day-aged ball-milled nanofuel compared to the similarly aged bath-sonicated nanofuel. While the maximum reduction in hydrocarbon emission was 8.9 % for 15-day-aged 100-ppm bath-sonicated nanofuel, there was 36.7 % reduction for 15-day-aged ball-milled nanofuel. Similarly, the effect of nanoadditives on particulate matter (PM) emissions was shown to decline over time, based on measurements with scanning mobility particle sizer. PM emissions data also showed significantly better engine performance for 15-day-aged ball-milled nanofuel compared to 15-day-aged bath-sonicated nanofuel. However, emission results showed higher particle number concentrations in the exhaust in some cases, for specific size ranges, compared to emissions from diesel, possibly due to the presence of nanoadditives. The comprehensive investigations clearly show that the issues with aging of nanofuel can be overcome using better dispersion techniques like ball milling.

Suggested Citation

  • Jain, Akshat & Ambekar, Anirudha & Thajudeen, Thaseem, 2025. "Effect of particle size distribution of nanoadditives in Titania-laden diesel fuel on the fine and ultrafine particulate emissions," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225009648
    DOI: 10.1016/j.energy.2025.135322
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225009648
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135322?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Soudagar, Manzoore Elahi M. & Nik-Ghazali, Nik-Nazri & Kalam, M.A. & Badruddin, Irfan Anjum & Banapurmath, N.R. & Bin Ali, Mohamad Azlin & Kamangar, Sarfaraz & Cho, Haeng Muk & Akram, Naveed, 2020. "An investigation on the influence of aluminium oxide nano-additive and honge oil methyl ester on engine performance, combustion and emission characteristics," Renewable Energy, Elsevier, vol. 146(C), pages 2291-2307.
    2. Saxena, Vishal & Kumar, Niraj & Saxena, Vinod.Kumar, 2017. "A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fuelled C.I. engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 563-588.
    3. Dhahad, Hayder Abed & Hasan, Ahmed Mudheher & Chaichan, Miqdam Tariq & Kazem, Hussein A., 2022. "Prognostic of diesel engine emissions and performance based on an intelligent technique for nanoparticle additives," Energy, Elsevier, vol. 238(PB).
    4. Sotiris Vardoulakis & Evanthia Giagloglou & Susanne Steinle & Alice Davis & Anne Sleeuwenhoek & Karen S. Galea & Ken Dixon & Joanne O. Crawford, 2020. "Indoor Exposure to Selected Air Pollutants in the Home Environment: A Systematic Review," IJERPH, MDPI, vol. 17(23), pages 1-24, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soudagar, Manzoore Elahi M. & Mujtaba, M.A. & Safaei, Mohammad Reza & Afzal, Asif & V, Dhana Raju & Ahmed, Waqar & Banapurmath, N.R. & Hossain, Nazia & Bashir, Shahid & Badruddin, Irfan Anjum & Goodar, 2021. "Effect of Sr@ZnO nanoparticles and Ricinus communis biodiesel-diesel fuel blends on modified CRDI diesel engine characteristics," Energy, Elsevier, vol. 215(PA).
    2. Özer, Salih. & Demir, Usame & Koçyiğit, Serhat., 2023. "Effect of using borax decahydrate as nanomaterials additive diesel fuel on diesel engine performance and emissions," Energy, Elsevier, vol. 266(C).
    3. Hosseinzadeh-Bandbafha, Homa & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Orooji, Yasin & Shahbeik, Hossein & Mahian, Omid & Karimi-Maleh, Hassan & Kalam, Md Abul & Salehi Jouzani, Gholamreza & M, 2023. "Applications of nanotechnology in biodiesel combustion and post-combustion stages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    4. Fariza Almira Ghany & Bambang Wahono & Achmad Praptijanto & Yanuandri Putrasari & Ahmad Dimyani & Arifin Nur & Suherman & Mulia Pratama & Muhammad Khristamto Aditya Wardana, 2024. "Study on the Effect of High-Concentration Oxygen Enrichment on Engine Performance and Exhaust Emissions Using Diesel Fuel and Palm Biodiesel Substitute Fuel," Energies, MDPI, vol. 17(1), pages 1-16, January.
    5. Mengting Liao & Yi Xiao & Shenxin Li & Juan Su & Ji Li & Bin Zou & Xiang Chen & Minxue Shen, 2022. "Synergistic Effects between Ambient Air Pollution and Second-Hand Smoke on Inflammatory Skin Diseases in Chinese Adolescents," IJERPH, MDPI, vol. 19(16), pages 1-12, August.
    6. K. M. Akkoli & N. R. Banapurmath & Suresh G & Manzoore Elahi M. Soudagar & T. M. Yunus Khan & Maughal Ahmed Ali Baig & M. A. Mujtaba & Nazia Hossain & Kiran Shahapurkar & Ashraf Elfasakhany & Mishal A, 2021. "Effect of Producer Gas from Redgram Stalk and Combustion Chamber Types on the Emission and Performance Characteristics of Diesel Engine," Energies, MDPI, vol. 14(18), pages 1-17, September.
    7. EL-Seesy, Ahmed I. & Hassan, Hamdy, 2019. "Investigation of the effect of adding graphene oxide, graphene nanoplatelet, and multiwalled carbon nanotube additives with n-butanol-Jatropha methyl ester on a diesel engine performance," Renewable Energy, Elsevier, vol. 132(C), pages 558-574.
    8. Abul Kalam Hossain & Abdul Hussain, 2019. "Impact of Nanoadditives on the Performance and Combustion Characteristics of Neat Jatropha Biodiesel," Energies, MDPI, vol. 12(5), pages 1-16, March.
    9. Jeeraporn Tippila & Naw Lah Say Wah & Kurnia Ardiansyah Akbar & Narumol Bhummaphan & Pokkate Wongsasuluk & Kraiwuth Kallawicha, 2024. "Ambient Air Pollution Exposure and Breast Cancer Risk Worldwide: A Systematic Review of Longitudinal Studies," IJERPH, MDPI, vol. 21(12), pages 1-16, December.
    10. El-Seesy, Ahmed I. & Hassan, Hamdy & Ookawara, S., 2018. "Effects of graphene nanoplatelet addition to jatropha Biodiesel–Diesel mixture on the performance and emission characteristics of a diesel engine," Energy, Elsevier, vol. 147(C), pages 1129-1152.
    11. Sarıdemir, Suat & Polat, Fikret & Simsir, Hamza & Uysal, Cuneyt & Ağbulut, Ümit, 2025. "Novel green hydrochar production for renewable fuel substitutes, and experimental investigation of its usability on CI engine performance, combustion, and emission characteristics," Energy, Elsevier, vol. 318(C).
    12. Sarah Oluwabunmi Bitire & Emeka Charles Nwanna & Tien-Chien Jen, 2023. "The impact of CuO nanoparticles as fuel additives in biodiesel-blend fuelled diesel engine: A review," Energy & Environment, , vol. 34(7), pages 2259-2289, November.
    13. Sarvestani, Nasrin Sabet & Tabasizadeh, Mohammad & Abbaspour Fard, Mohammad Hossein & Nayebzadeh, Hamed & Van, Thuy Chu & Jafari, Mohammad & Bodisco, Timothy A. & Ristovski, Zoran & Brown, Richard J., 2021. "Effects of enhanced fuel with Mg-doped Fe3O4 nanoparticles on combustion of a compression ignition engine: Influence of Mg cation concentration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    14. Bowen Zheng & Zhenghe Song & Enrong Mao & Quan Zhou & Zhenhao Luo & Zhichao Deng & Xuedong Shao & Yuxi Liu, 2022. "An ANN-PSO-Based Method for Optimizing Agricultural Tractors in Field Operation for Emission Reduction," Agriculture, MDPI, vol. 12(9), pages 1-16, August.
    15. Mohammed Aneeque & Saad Alshahrani & Mohammed Kareemullah & Asif Afzal & C. Ahamed Saleel & Manzoore Elahi M. Soudagar & Nazia Hossain & Ram Subbiah & Mohamed H. Ahmed, 2021. "The Combined Effect of Alcohols and Calophyllum inophyllum Biodiesel Using Response Surface Methodology Optimization," Sustainability, MDPI, vol. 13(13), pages 1-25, June.
    16. Ahmed A. Fattah & Tarek M. Aboul-Fotouh & Khaled A. Fattah & Aya H. Mohammed, 2022. "Utilization of Selected Nanoparticles (Ag 2 O and MnO 2 ) for the Production of High-Quality and Environmental-Friendly Gasoline," Sustainability, MDPI, vol. 14(19), pages 1-12, September.
    17. Jain, Akshay & Bora, Bhaskor Jyoti & Kumar, Rakesh & Sharma, Prabhakar & Paramasivam, Prabhu & Ağbulut, Ümit, 2024. "Decoding the performance of a blend of metal-oxide nanoparticles in Eichhornia crassipes biodiesel at varying injection timing through the routes of thermodynamic analysis and statistical optimization," Energy, Elsevier, vol. 311(C).
    18. Ishanka Perera & Kasun Hewage & Anber Rana & Rehan Sadiq, 2025. "Combining Energy Performance and Indoor Environmental Quality (IEQ) in Buildings: A Systematic Review on Common IEQ Guidelines and Energy Codes in North America," Energies, MDPI, vol. 18(7), pages 1-30, March.
    19. Ishaan Dawar & Maanas Singal & Vijayant Singh & Sumita Lamba & Shreyal Jain, 2025. "Predicting air quality index using machine learning: a case study of the Himalayan city of Dehradun," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(5), pages 5821-5847, March.
    20. Meshack Hawi & Ahmed Elwardany & Mohamed Ismail & Mahmoud Ahmed, 2019. "Experimental Investigation on Performance of a Compression Ignition Engine Fueled with Waste Cooking Oil Biodiesel–Diesel Blend Enhanced with Iron-Doped Cerium Oxide Nanoparticles," Energies, MDPI, vol. 12(5), pages 1-18, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225009648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.