IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v320y2025ics0360544225008060.html
   My bibliography  Save this article

Nanoscale surface engineering for reducing gas hydrate adhesion

Author

Listed:
  • Ma, Rui
  • Xiao, Senbo
  • Chang, Yuanhao
  • He, Jianying
  • Zhang, Zhiliang

Abstract

Gas hydrate deposition and adhesion to inner pipeline walls significantly challenge the safety and efficiency of natural gas exploration and transportation systems. Effective material-based passive anti-hydrate solutions are urgently needed to replace the conventional methods, which are costly and environmentally unfriendly. Understanding how hydrates interact with rough solid surfaces is essential to developing these solutions. This study investigates the solidification and detachment processes of gas hydrates on rough solid surfaces from the perspective of nanomechanics using molecular dynamics (MD) simulations. The effects of surface roughness on hydrate adhesion at various interfacial gas contents and temperatures have been systematically explored. Unlike macroscale roughness, which typically increases adhesion strength due to enlarged contact areas and mechanical interlocking, our findings show that nanoscale roughness can act as interface crack initiator, weakening the adhesion strength. The results demonstrate the feasibility of reducing hydrate adhesion through surface engineering, suggesting that designing optimal surface roughness can serve as a novel strategy for fabricating anti-hydrate materials. Furthermore, a relationship between hydrate adhesion strength and nanoscale interfacial structures has been established, which can be encapsulated as a classifier. This classifier can facilitate large-scale screening for promising anti-hydrate surface materials through machine learning.

Suggested Citation

  • Ma, Rui & Xiao, Senbo & Chang, Yuanhao & He, Jianying & Zhang, Zhiliang, 2025. "Nanoscale surface engineering for reducing gas hydrate adhesion," Energy, Elsevier, vol. 320(C).
  • Handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008060
    DOI: 10.1016/j.energy.2025.135164
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225008060
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135164?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Bingbing & Sun, Huiru & Li, Kehan & Yu, Tao & Jiang, Lanlan & Yang, Mingjun & Song, Yongchen, 2023. "Unsaturated water flow-induced the structure variation of gas hydrate reservoir and its effect on fluid migration and gas production," Energy, Elsevier, vol. 282(C).
    2. Wang, Tian & Fan, Ziyu & Sun, Lingjie & Yang, Lei & Zhao, Jiafei & Song, Yongchen & Zhang, Lunxiang, 2024. "Pore-scale behaviors of CO2 hydrate formation and dissociation in the presence of swelling clay: Implication for geologic carbon sequestration," Energy, Elsevier, vol. 308(C).
    3. Chang, Yuanhao & Xiao, Senbo & Ma, Rui & Zhang, Zhiliang & He, Jianying, 2022. "Atomistic insight into oil displacement on rough surface by Janus nanoparticles," Energy, Elsevier, vol. 245(C).
    4. Chong, Zheng Rong & Yang, She Hern Bryan & Babu, Ponnivalavan & Linga, Praveen & Li, Xiao-Sen, 2016. "Review of natural gas hydrates as an energy resource: Prospects and challenges," Applied Energy, Elsevier, vol. 162(C), pages 1633-1652.
    5. Martin Fitzner & Gabriele C. Sosso & Fabio Pietrucci & Silvio Pipolo & Angelos Michaelides, 2017. "Pre-critical fluctuations and what they disclose about heterogeneous crystal nucleation," Nature Communications, Nature, vol. 8(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Song & Yaojiang Duan & Jianjun Liu & Yujia Song, 2022. "Numerical Modeling on Dissociation and Transportation of Natural Gas Hydrate Considering the Effects of the Geo-Stress," Energies, MDPI, vol. 15(24), pages 1-22, December.
    2. Song, Rui & Feng, Xiaoyu & Wang, Yao & Sun, Shuyu & Liu, Jianjun, 2021. "Dissociation and transport modeling of methane hydrate in core-scale sandy sediments: A comparative study," Energy, Elsevier, vol. 221(C).
    3. Cheng, Zucheng & Sun, Lintao & Liu, Yingying & Jiang, Lanlan & Chen, Bingbing & Song, Yongchen, 2023. "Study on the micro-macro kinetic and amino acid-enhanced separation of CO2-CH4 via sII hydrate," Renewable Energy, Elsevier, vol. 218(C).
    4. Xu, Chun-Gang & Cai, Jing & Yu, Yi-Song & Yan, Ke-Feng & Li, Xiao-Sen, 2018. "Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement," Applied Energy, Elsevier, vol. 217(C), pages 527-536.
    5. Yang, Le & Lin, Hongju & Fang, Zhihao & Yang, Yanhui & Liu, Xiaohao & Ouyang, Gangfeng, 2023. "Recent advances on methane partial oxidation toward oxygenates under mild conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    6. Li, Bo & Zhang, Ting-Ting & Wan, Qing-Cui & Feng, Jing-Chun & Chen, Ling-Ling & Wei, Wen-Na, 2021. "Kinetic study of methane hydrate development involving the role of self-preservation effect in frozen sandy sediments," Applied Energy, Elsevier, vol. 300(C).
    7. Cheng, Fanbao & Sun, Xiang & Li, Yanghui & Ju, Xin & Yang, Yaobin & Liu, Xuanji & Liu, Weiguo & Yang, Mingjun & Song, Yongchen, 2023. "Numerical analysis of coupled thermal-hydro-chemo-mechanical (THCM) behavior to joint production of marine gas hydrate and shallow gas," Energy, Elsevier, vol. 281(C).
    8. Stanislav L. Borodin & Nail G. Musakaev & Denis S. Belskikh, 2022. "Mathematical Modeling of a Non-Isothermal Flow in a Porous Medium Considering Gas Hydrate Decomposition: A Review," Mathematics, MDPI, vol. 10(24), pages 1-17, December.
    9. Liu, Zheng & Zheng, Junjie & Wang, Zhiyuan & Gao, Yonghai & Sun, Baojiang & Liao, Youqiang & Linga, Praveen, 2023. "Effect of clay on methane hydrate formation and dissociation in sediment: Implications for energy recovery from clayey-sandy hydrate reservoirs," Applied Energy, Elsevier, vol. 341(C).
    10. Liu, Jinxiang & Hou, Jian & Xu, Jiafang & Liu, Haiying & Chen, Gang & Zhang, Jun, 2017. "Formation of clathrate cages of sI methane hydrate revealed by ab initio study," Energy, Elsevier, vol. 120(C), pages 698-704.
    11. Zhu, Huixing & Xu, Tianfu & Yuan, Yilong & Xia, Yingli & Xin, Xin, 2020. "Numerical investigation of the natural gas hydrate production tests in the Nankai Trough by incorporating sand migration," Applied Energy, Elsevier, vol. 275(C).
    12. Zhao, Guojun & Zheng, Jia-nan & Gong, Guangjun & Chen, Bingbing & Yang, Mingjun & Song, Yongchen, 2023. "Formation characteristics and leakage termination effects of CO2 hydrate cap in case of geological sequestration leakage," Applied Energy, Elsevier, vol. 351(C).
    13. Guo, Dan & Cao, Xuewen & Ding, Gaoya & Zhang, Pan & Liu, Yang & Bian, Jiang, 2022. "Crystallization and nucleation mechanism of heavy hydrocarbons in natural gas," Energy, Elsevier, vol. 239(PB).
    14. Du, Hongxing & Zhang, Yiqun & Zhang, Bo & Tian, Shouceng & Li, Gensheng & Zhang, Panpan, 2023. "Study of CO2 injection to enhance gas hydrate production in multilateral wells," Energy, Elsevier, vol. 283(C).
    15. Yang, Mingjun & Dong, Shuang & Zhao, Jie & Zheng, Jia-nan & Liu, Zheyuan & Song, Yongchen, 2021. "Ice behaviors and heat transfer characteristics during the isothermal production process of methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 232(C).
    16. Elke Kossel & Nikolaus K. Bigalke & Christian Deusner & Matthias Haeckel, 2021. "Microscale Processes and Dynamics during CH 4 –CO 2 Guest-Molecule Exchange in Gas Hydrates," Energies, MDPI, vol. 14(6), pages 1-31, March.
    17. Park, Joon Ho & Park, Jungjoon & Lee, Jae Won & Kang, Yong Tae, 2023. "Progress in CO2 hydrate formation and feasibility analysis for cold thermal energy harvesting application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    18. Wang, Xiao & Pan, Lin & Lau, Hon Chung & Zhang, Ming & Li, Longlong & Zhou, Qiao, 2018. "Reservoir volume of gas hydrate stability zones in permafrost regions of China," Applied Energy, Elsevier, vol. 225(C), pages 486-500.
    19. Fangtian Wang & Bin Zhao & Gang Li, 2018. "Prevention of Potential Hazards Associated with Marine Gas Hydrate Exploitation: A Review," Energies, MDPI, vol. 11(9), pages 1-19, September.
    20. Mok, Junghoon & Choi, Wonjung & Seo, Yongwon, 2021. "The dual-functional roles of N2 gas for the exploitation of natural gas hydrates: An inhibitor for dissociation and an external guest for replacement," Energy, Elsevier, vol. 232(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:320:y:2025:i:c:s0360544225008060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.