IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v319y2025ics0360544225006693.html
   My bibliography  Save this article

Study on bionic leaf-vein like heat sinks topology optimisation method

Author

Listed:
  • Dong, ChuanChang
  • Zhang, ChunBo
  • He, GeNing
  • Li, DongHui
  • Zhang, ZiWei
  • Cong, JiDong
  • Meng, Z.M.
  • Asim, Shehzad
  • Ashraf, Mehtab

Abstract

Finned heat sinks are high-efficiency heat dissipation equipment, widely used in various industrial and civil fields. In the nuclear field, many systems use finned heat sinks to enhance heat dissipation, such as spent fuel pools, passive decay heat removal systems, and reactor cavity cooling systems (RCCS). To improve the heat dissipation capacity of heat sinks, this study proposes a novel bionic leaf-vein-like heat sink topology optimisation method (bionic topology optimisation method). This method consists of two steps: bionic optimisation and topology optimisation. In this study, a bionic optimisation method was used to design leaf-vein bionic heat sinks (ordinary bionic heat sinks). Compared to the traditional plate-fin heat sink, the ordinary bionic heat sink reduced the thermal resistance and volume by 6.45 % and 22.50 %, respectively. Furthermore, the convective heat transfer coefficient was calculated by identifying the solid-air boundary elements. Subsequently, based on the natural convection surrogate model, topology optimisation was performed on an ordinary bionic leaf-vein heat sink under RCCS engineering conditions. Further numerical simulation analysis showed that the unique leaf-vein-like fin structure obtained by topology optimisation not only enhanced heat conduction, but also increased the airflow velocity near the fins and disrupted the airflow. Therefore, cooler air could enter the flow channels more easily. Under the combined effects of the airflow velocity and heat transfer temperature difference, the heat dissipation capability of the topology bionic heat sink was significantly improved. Compared to the ordinary bionic heat sink, the thermal resistance of the topology bionic heat sink was reduced by 36.40 %.

Suggested Citation

  • Dong, ChuanChang & Zhang, ChunBo & He, GeNing & Li, DongHui & Zhang, ZiWei & Cong, JiDong & Meng, Z.M. & Asim, Shehzad & Ashraf, Mehtab, 2025. "Study on bionic leaf-vein like heat sinks topology optimisation method," Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225006693
    DOI: 10.1016/j.energy.2025.135027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225006693
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.135027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Lucien Benguigui & Daniel Czamanski & Maria Marinov & Yuval Portugali, 2000. "When and Where is a City Fractal?," Environment and Planning B, , vol. 27(4), pages 507-519, August.
    2. See, Y.S. & Ho, J.Y. & Leong, K.C. & Wong, T.N., 2022. "Experimental investigation of a topology-optimized phase change heat sink optimized for natural convection," Applied Energy, Elsevier, vol. 314(C).
    3. Yan, Peiliang & Fan, Weijun & Han, Yu & Ding, Hongbing & Wen, Chuang & Elbarghthi, Anas F.A. & Yang, Yan, 2023. "Leaf-vein bionic fin configurations for enhanced thermal energy storage performance of phase change materials in smart heating and cooling systems," Applied Energy, Elsevier, vol. 346(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bo Liu & Desheng Xue & Yiming Tan, 2019. "Deciphering the Manufacturing Production Space in Global City-Regions of Developing Countries—a Case of Pearl River Delta, China," Sustainability, MDPI, vol. 11(23), pages 1-26, December.
    2. Yang, Sheng & Shao, Xue-Feng & Luo, Jia-Hao & Baghaei Oskouei, Seyedmohsen & Bayer, Özgür & Fan, Li-Wu, 2023. "A novel cascade latent heat thermal energy storage system consisting of erythritol and paraffin wax for deep recovery of medium-temperature industrial waste heat," Energy, Elsevier, vol. 265(C).
    3. Yanguang Chen & Yixing Zhou, 2006. "Reinterpreting Central Place Networks Using Ideas from Fractals and Self-Organized Criticality," Environment and Planning B, , vol. 33(3), pages 345-364, June.
    4. Yanguang Chen & Yixing Zhou, 2003. "The Rank-Size Rule and Fractal Hierarchies of Cities: Mathematical Models and Empirical Analyses," Environment and Planning B, , vol. 30(6), pages 799-818, December.
    5. Yanguang Chen & Jiejing Wang, 2013. "Multifractal Characterization of Urban Form and Growth: The Case of Beijing," Environment and Planning B, , vol. 40(5), pages 884-904, October.
    6. Ait Laasri, Imad & Es-sakali, Niima & Charai, Mouatassim & Mghazli, Mohamed Oualid & Outzourhit, Abdelkader, 2024. "Recent progress, limitations, and future directions of macro-encapsulated phase change materials for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    7. Jian Feng & Yanguang Chen, 2021. "Modeling Urban Growth and Socio-Spatial Dynamics of Hangzhou, China: 1964–2010," Sustainability, MDPI, vol. 13(2), pages 1-25, January.
    8. Chen, Yanguang, 2009. "Analogies between urban hierarchies and river networks: Fractals, symmetry, and self-organized criticality," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1766-1778.
    9. Chen, Yanguang & Zhou, Yixing, 2008. "Scaling laws and indications of self-organized criticality in urban systems," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 85-98.
    10. Song, Zhijun & Jin, Wenxuan & Jiang, Guanghui & Li, Sichun & Ma, Wenqiu, 2021. "Typical and atypical multifractal systems of urban spaces—using construction land in Zhengzhou from 1988 to 2015 as an example," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    11. Huan Lu & Ruiyang Wang & Rong Ye & Jinzhao Fan, 2023. "Monitoring Long-Term Spatiotemporal Dynamics of Urban Expansion Using Multisource Remote Sensing Images and Historical Maps: A Case Study of Hangzhou, China," Land, MDPI, vol. 12(1), pages 1-23, January.
    12. Myagmartseren Purevtseren & Bazarkhand Tsegmid & Myagmarjav Indra & Munkhnaran Sugar, 2018. "The Fractal Geometry of Urban Land Use: The Case of Ulaanbaatar City, Mongolia," Land, MDPI, vol. 7(2), pages 1-14, May.
    13. Chen, Yanguang, 2013. "Fractal analytical approach of urban form based on spatial correlation function," Chaos, Solitons & Fractals, Elsevier, vol. 49(C), pages 47-60.
    14. Czamanski, Daniel & Broitman, Dani, 2017. "Information and communication technology and the spatial evolution of mature cities," Socio-Economic Planning Sciences, Elsevier, vol. 58(C), pages 30-38.
    15. Chen, Yanguang & Lin, Jingyi, 2009. "Modeling the self-affine structure and optimization conditions of city systems using the idea from fractals," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 615-629.
    16. Lucien Benguigui & Daniel Czamanski & Maria Marinov, 2001. "The Dynamics of Urban Morphology: The Case of Petah Tikvah," Environment and Planning B, , vol. 28(3), pages 447-460, June.
    17. Boeing, Geoff, 2017. "Methods and Measures for Analyzing Complex Street Networks and Urban Form," SocArXiv 93h82, Center for Open Science.
    18. Ming-Che Lin & Ruei-Fong Lin, 2022. "Design Analysis of Heat Sink Using the Field Synergy Principle and Multitarget Response Surface Methodology," Energies, MDPI, vol. 15(22), pages 1-13, November.
    19. Daniel Czamanski & Rafael Roth, 2011. "Characteristic time, developers’ behavior and leapfrogging dynamics of high-rise buildings," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 46(1), pages 101-118, February.
    20. Saeedimoghaddam, Mahmoud & Stepinski, T.F. & Dmowska, Anna, 2020. "Rényi’s spectra of urban form for different modalities of input data," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225006693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.