IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v40y2013i5p884-904.html
   My bibliography  Save this article

Multifractal Characterization of Urban Form and Growth: The Case of Beijing

Author

Listed:
  • Yanguang Chen

    (Department of Geography, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China)

  • Jiejing Wang

    (Department of Urban Planning and Design, The University of Hong Kong, Pokfulam Road, Hong Kong SAR)

Abstract

Urban form takes on properties similar to random growing fractals and can be described in terms of fractal geometry. However, a model of simple fractals is not effectual enough to characterize both the global and local features of urban patterns. In this paper multifractal measurements are employed to model urban form and analyze urban growth. The capacity dimension D 0 , information dimension D 1 , and correlation dimension D 2 of a city's pattern can be estimated utilizing the box-counting method. If D 0 > D 1 > D 2 significantly, the city can be treated as a system of multifractals, and two sets of fractal parameters, including global and local parameters, can be used to spatially analyze urban growth. In this case study, multifractal geometry was applied to Beijing city, China. The results based on the remote-sensing images taken in 1988, 1992, 1999, 2006, and 2009 show that the urban landscape of Beijing bears multiscaling fractal attributes. The dimension spectrum curves show several abnormal aspects, especially the upper limit of the global dimension breaks through the Euclidean dimension of embedding space and the local dimension fails to converge in a proper way. The geographical features of Beijing's spatiotemporal evolution are discussed, and the conclusions may be instructive for spatial optimization and city planning in the future.

Suggested Citation

  • Yanguang Chen & Jiejing Wang, 2013. "Multifractal Characterization of Urban Form and Growth: The Case of Beijing," Environment and Planning B, , vol. 40(5), pages 884-904, October.
  • Handle: RePEc:sae:envirb:v:40:y:2013:i:5:p:884-904
    DOI: 10.1068/b36155
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/b36155
    Download Restriction: no

    File URL: https://libkey.io/10.1068/b36155?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R White & G Engelen, 1993. "Cellular Automata and Fractal Urban Form: A Cellular Modelling Approach to the Evolution of Urban Land-Use Patterns," Environment and Planning A, , vol. 25(8), pages 1175-1199, August.
    2. repec:cai:popine:popu_p1998_10n1_0240 is not listed on IDEAS
    3. Isabelle Thomas & Pierre Frankhauser & Marie‐Laurence De Keersmaecker, 2007. "Fractal dimension versus density of built‐up surfaces in the periphery of Brussels," Papers in Regional Science, Wiley Blackwell, vol. 86(2), pages 287-308, June.
    4. Lucien Benguigui & Daniel Czamanski & Maria Marinov & Yuval Portugali, 2000. "When and Where is a City Fractal?," Environment and Planning B, , vol. 27(4), pages 507-519, August.
    5. Isabelle Thomas & Marie-Laurence De Keersmaecker & Pierre Frankhauser, 2003. "Using fractal dimensions for characterizing intra-urban diversity. The example of Brussels," ERSA conference papers ersa03p116, European Regional Science Association.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salat, Hadrien & Murcio, Roberto & Arcaute, Elsa, 2017. "Multifractal methodology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 467-487.
    2. Cats, Oded & Wang, Qian & Zhao, Yu, 2015. "Identification and classification of public transport activity centres in Stockholm using passenger flows data," Journal of Transport Geography, Elsevier, vol. 48(C), pages 10-22.
    3. Yi Chen & Zhijun Song & Guangfeng Zhang & Muhammad Tariq Majeed & Yun Li, 2018. "Spatio-temporal evolutionary analysis of the township enterprises of Beijing suburbs using computational intelligence assisted design framework," Palgrave Communications, Palgrave Macmillan, vol. 4(1), pages 1-14, December.
    4. Zhijun SONG & Linjun YU, 2019. "Multifractal features of spatial variation in construction land in Beijing (1985–2015)," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-15, December.
    5. Chen, Yanguang & Huang, Linshan, 2019. "Modeling growth curve of fractal dimension of urban form of Beijing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1038-1056.
    6. Xia, Linlin & Zhang, Yan & Sun, Xiaoxi & Li, Jinjian, 2017. "Analyzing the spatial pattern of carbon metabolism and its response to change of urban form," Ecological Modelling, Elsevier, vol. 355(C), pages 105-115.
    7. Pavón-Domínguez, P. & Rincón-Casado, A. & Ruiz, P. & Camacho-Magriñán, P., 2018. "Multifractal approach for comparing road transport network geometry: The case of Spain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 678-690.
    8. Fei Liu & Qing Huang, 2019. "An Approach to Determining the Spatially Contiguous Zone of a Self-Organized Urban Agglomeration," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    9. François Sémécurbe & Cécile Tannier & Stéphane G. Roux, 2019. "Applying two fractal methods to characterise the local and global deviations from scale invariance of built patterns throughout mainland France," Journal of Geographical Systems, Springer, vol. 21(2), pages 271-293, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yanguang, 2013. "Fractal analytical approach of urban form based on spatial correlation function," Chaos, Solitons & Fractals, Elsevier, vol. 49(C), pages 47-60.
    2. Isabelle Thomas & Pierre Frankhauser & Dominique Badariotti, 2012. "Comparing the fractality of European urban neighbourhoods: do national contexts matter?," Journal of Geographical Systems, Springer, vol. 14(2), pages 189-208, April.
    3. Jian Feng & Yanguang Chen, 2010. "Spatiotemporal Evolution of Urban Form and Land-Use Structure in Hangzhou, China: Evidence from Fractals," Environment and Planning B, , vol. 37(5), pages 838-856, October.
    4. Chen, Yanguang, 2013. "A set of formulae on fractal dimension relations and its application to urban form," Chaos, Solitons & Fractals, Elsevier, vol. 54(C), pages 150-158.
    5. Chen, Yanguang & Zhou, Yixing, 2008. "Scaling laws and indications of self-organized criticality in urban systems," Chaos, Solitons & Fractals, Elsevier, vol. 35(1), pages 85-98.
    6. Myagmartseren Purevtseren & Bazarkhand Tsegmid & Myagmarjav Indra & Munkhnaran Sugar, 2018. "The Fractal Geometry of Urban Land Use: The Case of Ulaanbaatar City, Mongolia," Land, MDPI, vol. 7(2), pages 1-14, May.
    7. Chen, Yanguang & Lin, Jingyi, 2009. "Modeling the self-affine structure and optimization conditions of city systems using the idea from fractals," Chaos, Solitons & Fractals, Elsevier, vol. 41(2), pages 615-629.
    8. Cécile Tannier & Gilles Vuidel & Hélène Houot & Pierre Frankhauser, 2012. "Spatial Accessibility to Amenities in Fractal and Nonfractal Urban Patterns," Environment and Planning B, , vol. 39(5), pages 801-819, October.
    9. Chong Zhao & Yu Li & Min Weng, 2021. "A Fractal Approach to Urban Boundary Delineation Based on Raster Land Use Maps: A Case of Shanghai, China," Land, MDPI, vol. 10(9), pages 1-21, September.
    10. François Sémécurbe & Cécile Tannier & Stéphane G. Roux, 2019. "Applying two fractal methods to characterise the local and global deviations from scale invariance of built patterns throughout mainland France," Journal of Geographical Systems, Springer, vol. 21(2), pages 271-293, June.
    11. Qindong Fan & Fengtian Du & Hu Li, 2020. "A Study of the Spatial Form of Maling Village, Henan, China," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    12. Chen, Yanguang, 2012. "Fractal dimension evolution and spatial replacement dynamics of urban growth," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 115-124.
    13. Chen, Yanguang, 2022. "Normalizing and classifying shape indexes of cities by ideas from fractals," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    14. Yanguang Chen & Yixing Zhou, 2003. "The Rank-Size Rule and Fractal Hierarchies of Cities: Mathematical Models and Empirical Analyses," Environment and Planning B, , vol. 30(6), pages 799-818, December.
    15. Jian Feng & Yanguang Chen, 2021. "Modeling Urban Growth and Socio-Spatial Dynamics of Hangzhou, China: 1964–2010," Sustainability, MDPI, vol. 13(2), pages 1-25, January.
    16. Chen, Yanguang, 2009. "Analogies between urban hierarchies and river networks: Fractals, symmetry, and self-organized criticality," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1766-1778.
    17. Song, Zhijun & Jin, Wenxuan & Jiang, Guanghui & Li, Sichun & Ma, Wenqiu, 2021. "Typical and atypical multifractal systems of urban spaces—using construction land in Zhengzhou from 1988 to 2015 as an example," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    18. Huan Lu & Ruiyang Wang & Rong Ye & Jinzhao Fan, 2023. "Monitoring Long-Term Spatiotemporal Dynamics of Urban Expansion Using Multisource Remote Sensing Images and Historical Maps: A Case Study of Hangzhou, China," Land, MDPI, vol. 12(1), pages 1-23, January.
    19. Boeing, Geoff, 2017. "Methods and Measures for Analyzing Complex Street Networks and Urban Form," SocArXiv 93h82, Center for Open Science.
    20. Saeedimoghaddam, Mahmoud & Stepinski, T.F. & Dmowska, Anna, 2020. "Rényi’s spectra of urban form for different modalities of input data," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:40:y:2013:i:5:p:884-904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.