IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v319y2025ics0360544225006000.html
   My bibliography  Save this article

Experimental investigation on the solid desiccant heat pump in different switchover periods

Author

Listed:
  • Li, Qian
  • Wang, Ruzhu
  • Ge, Tianshu

Abstract

Equipped with the desiccant-coated heat exchanger (DCHE), the solid desiccant heat pump (SDHP) is a promising air handling method for its high energy efficiency and dehumidification capacity. Previous studies mostly use a short switchover period to obtain the high dehumidification rate, however, the short switchover period also aggravates energy loss. To reveal the effect of the switchover period, especially a longer one, an SDHP system is constructed and studied in this paper. Results indicate that the condensation temperature keeps increasing in the short switchover period, while it tends to be constant at first and then rises in longer switchover periods. Besides, the long switchover period leads to the high superheat and subcooled degree and causes extra energy loss. Based on this discovery, the working strategies of the throttle valve and compressor are optimized. The energy loss can be reduced by 41.9 % and the COP is improved by 11 % without reduction of cooling capacity. With the optimized working strategies, the research on SDHP in different switchover periods (3–10 min) and environments (30–33 °C, 50–70%RH) is conducted. In every condition, an optimal switchover period exists to achieve the highest COP. As the humidity increases, a longer switchover period is recommended.

Suggested Citation

  • Li, Qian & Wang, Ruzhu & Ge, Tianshu, 2025. "Experimental investigation on the solid desiccant heat pump in different switchover periods," Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225006000
    DOI: 10.1016/j.energy.2025.134958
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225006000
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134958?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ge, T.S. & Dai, Y.J. & Wang, R.Z. & Li, Y., 2008. "Experimental investigation on a one-rotor two-stage rotary desiccant cooling system," Energy, Elsevier, vol. 33(12), pages 1807-1815.
    2. Hua, L.J. & Jiang, Y. & Ge, T.S. & Wang, R.Z., 2018. "Experimental investigation on a novel heat pump system based on desiccant coated heat exchangers," Energy, Elsevier, vol. 142(C), pages 96-107.
    3. Hua, L.J. & Ge, T.S. & Wang, R.Z., 2019. "Extremely high efficient heat pump with desiccant coated evaporator and condenser," Energy, Elsevier, vol. 170(C), pages 569-579.
    4. Sorrell, Steve, 2015. "Reducing energy demand: A review of issues, challenges and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 74-82.
    5. Ge, Lurong & Ge, Tianshu & Wang, Ruzhu, 2022. "Facile synthesis of Al-based MOF and its applications in desiccant coated heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. Huang, Yanjun & Khajepour, Amir & Bagheri, Farshid & Bahrami, Majid, 2016. "Optimal energy-efficient predictive controllers in automotive air-conditioning/refrigeration systems," Applied Energy, Elsevier, vol. 184(C), pages 605-618.
    7. Spandagos, Constantinos & Ng, Tze Ling, 2017. "Equivalent full-load hours for assessing climate change impact on building cooling and heating energy consumption in large Asian cities," Applied Energy, Elsevier, vol. 189(C), pages 352-368.
    8. Mohammad, Abdulrahman Th. & Bin Mat, Sohif & Sulaiman, M.Y. & Sopian, K. & Al-abidi, Abduljalil A., 2013. "Survey of hybrid liquid desiccant air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 186-200.
    9. Zheng, X. & Ge, T.S. & Wang, R.Z., 2014. "Recent progress on desiccant materials for solid desiccant cooling systems," Energy, Elsevier, vol. 74(C), pages 280-294.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hua, Lingji & Wang, Ruzhu, 2022. "An exergy analysis and parameter optimization of solid desiccant heat pumps recovering the condensation heat for desiccant regeneration and heat transfer enhancement," Energy, Elsevier, vol. 238(PB).
    2. Feng, Y.H. & Dai, Y.J. & Wang, R.Z. & Ge, T.S., 2022. "Insights into desiccant-based internally-cooled dehumidification using porous sorbents: From a modeling viewpoint," Applied Energy, Elsevier, vol. 311(C).
    3. Ge, Lurong & Ge, Tianshu & Wang, Ruzhu, 2022. "Facile synthesis of Al-based MOF and its applications in desiccant coated heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Hua, L.J. & Ge, T.S. & Wang, R.Z., 2019. "Extremely high efficient heat pump with desiccant coated evaporator and condenser," Energy, Elsevier, vol. 170(C), pages 569-579.
    5. Shao, Z. & Wang, Z.G. & Poredoš, P. & Ge, T.S. & Wang, R.Z., 2023. "Highly efficient desiccant-coated heat exchanger-based heat pump to decarbonize rail transportation," Energy, Elsevier, vol. 271(C).
    6. Zu, Kan & Qin, Menghao & Cui, Shuqing, 2020. "Progress and potential of metal-organic frameworks (MOFs) as novel desiccants for built environment control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Hwang, Won-Baek & Choi, Sun & Lee, Dae-Young, 2017. "In-depth analysis of the performance of hybrid desiccant cooling system incorporated with an electric heat pump," Energy, Elsevier, vol. 118(C), pages 324-332.
    8. Wang, Cong & Yang, Bianfeng & Ji, Xu & Zhang, Ren & Wu, Hailong, 2022. "Study on activated carbon/silica gel/lithium chloride composite desiccant for solid dehumidification," Energy, Elsevier, vol. 251(C).
    9. Cai, Jinliang & Zheng, Xu & Pan, Quanwen & Li, Dan & Wang, Weining, 2025. "Advances in hygroscopic metal-organic frameworks for air, water & energy applications," Applied Energy, Elsevier, vol. 377(PA).
    10. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    11. Yang, Tianyu & Ge, Tianshu, 2024. "Performance study of a heat pump fresh air unit based on desiccant coated heat exchangers under different operation strategies," Energy, Elsevier, vol. 296(C).
    12. Ge, Lurong & Feng, Yaohui & Wu, Jiarong & Wang, Ruzhu & Ge, Tianshu, 2024. "Performance evaluation of MIL-101(Cr) based desiccant-coated heat exchangers for efficient dehumidification," Energy, Elsevier, vol. 289(C).
    13. Xie, Mingxi & Chen, Erjian & Huang, Guorui & Jia, Teng & Dai, Yanjun, 2025. "Recent advancements in deep dehumidification technology: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 211(C).
    14. Wu, X.N. & Ge, T.S. & Dai, Y.J. & Wang, R.Z., 2019. "Investigation on novel desiccant wheel using wood pulp fiber paper with high coating ratio as matrix," Energy, Elsevier, vol. 176(C), pages 493-504.
    15. Zhang, Yu & Wang, Weining & Zheng, Xu & Cai, Jinliang, 2024. "Recent progress on composite desiccants for adsorption-based dehumidification," Energy, Elsevier, vol. 302(C).
    16. Hua, L.J. & Jiang, Y. & Ge, T.S. & Wang, R.Z., 2018. "Experimental investigation on a novel heat pump system based on desiccant coated heat exchangers," Energy, Elsevier, vol. 142(C), pages 96-107.
    17. Chen, Chih-Hao & Hsu, Chien-Yeh & Chen, Chih-Chieh & Chiang, Yuan-Ching & Chen, Sih-Li, 2016. "Silica gel/polymer composite desiccant wheel combined with heat pump for air-conditioning systems," Energy, Elsevier, vol. 94(C), pages 87-99.
    18. Gao, D.C. & Sun, Y.J. & Ma, Z. & Ren, H., 2021. "A review on integration and design of desiccant air-conditioning systems for overall performance improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    19. Bui, Duc Thuan & Kum Ja, M. & Gordon, Jeffrey M. & Ng, Kim Choon & Chua, Kian Jon, 2017. "A thermodynamic perspective to study energy performance of vacuum-based membrane dehumidification," Energy, Elsevier, vol. 132(C), pages 106-115.
    20. Zheng, Xu & Wan, Tinghao & Zhang, Yu & Ma, Qianling, 2024. "Experimental investigation of a thermo-responsive composite coated heat exchanger for ultra-low grade heat utilization," Energy, Elsevier, vol. 293(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225006000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.