IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v319y2025ics0360544225003949.html
   My bibliography  Save this article

Proactive operational strategy of thermal energy storage tank in an industrial multi-chiller system based on chilled water flow difference between supply and demand sides

Author

Listed:
  • Feng, Yiwei
  • Li, Yanpeng
  • Qu, Shengli
  • Liu, Yishuang
  • Wang, Chuang
  • Han, Yaoxiang
  • Xing, Ziwen

Abstract

For refrigeration systems characterized by peak-valley load variations, integrating a small-scale thermal energy storage tank to deal with these fluctuations can achieve low investment and high energy savings. This study developed an operational strategy for a thermal energy storage tank that proactively identifies multiple local peak-valley load changes, achieving both global and localized peaks shifting. This strategy aims to enhance system robustness against demand side load uncertainties, and minimizes operational costs. The tank's charging/discharging is comprehensively controlled based on chilled water flow difference between supply and demand sides, the number of operation chillers, and the tank's internal temperature. Unlike a strategy that only considers global load peak-valley periods, this strategy increased the frequency of charging/discharging cycles and energy-saving rate. And compared to a strategy that operates based solely on the tank's temperature limits, this strategy incorporates proactive identification of load peaks and valleys, allowing appropriate and flexible switching between charging and discharging, enhancing system robustness. Applied to a multi-chiller system with a 360 m3 tank in a fresh milk production facility, results showed a 2.22 % energy-saving rate and an 8.86 % reduction in cooling capacity fluctuation, indicate that this control strategy can improve robustness while reduce daily electricity cost.

Suggested Citation

  • Feng, Yiwei & Li, Yanpeng & Qu, Shengli & Liu, Yishuang & Wang, Chuang & Han, Yaoxiang & Xing, Ziwen, 2025. "Proactive operational strategy of thermal energy storage tank in an industrial multi-chiller system based on chilled water flow difference between supply and demand sides," Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225003949
    DOI: 10.1016/j.energy.2025.134752
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225003949
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134752?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Yiqun & Zhang, Quan & Zeng, Liping & Wang, Jiaqiang & Zou, Sikai, 2024. "An advanced control strategy of hybrid cooling system with cold water storage system in data center," Energy, Elsevier, vol. 291(C).
    2. Zhou, Yuekuan & Zheng, Siqian, 2020. "Machine-learning based hybrid demand-side controller for high-rise office buildings with high energy flexibilities," Applied Energy, Elsevier, vol. 262(C).
    3. Ono, Hitoi & Ohtani, Yuichi & Matsuo, Minoru & Yamaguchi, Toru & Yokoyama, Ryohei, 2021. "Optimal operation of heat source and air conditioning system with thermal storage tank using nonlinear programming," Energy, Elsevier, vol. 222(C).
    4. Kim, Donghun & Wang, Zhe & Brugger, James & Blum, David & Wetter, Michael & Hong, Tianzhen & Piette, Mary Ann, 2022. "Site demonstration and performance evaluation of MPC for a large chiller plant with TES for renewable energy integration and grid decarbonization," Applied Energy, Elsevier, vol. 321(C).
    5. Wang, Runchen & Du, Xiaonan & Shi, Yuetao & Deng, Weipeng & Wang, Yuhao & Sun, Fengzhong, 2024. "A novel system for reducing power plant electricity consumption and enhancing deep peak-load capability," Energy, Elsevier, vol. 295(C).
    6. Yu, Shiwei & Zhou, Shuangshuang & Chen, Nan, 2024. "Multi-objective optimization of capacity and technology selection for provincial energy storage in China: The effects of peak-shifting and valley-filling," Applied Energy, Elsevier, vol. 355(C).
    7. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu, 2023. "Globally optimal control of hybrid chilled water plants integrated with small-scale thermal energy storage for energy-efficient operation," Energy, Elsevier, vol. 262(PA).
    8. P. K. Mukherjee & Eric Gibbs & Archana Walia & Colin Taylor, 2020. "Staying cool: The development of India's pioneering energy efficiency policy for chillers," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(4), July.
    9. Borge-Diez, David & Icaza, Daniel & Trujillo-Cueva, Diego Francisco & Açıkkalp, Emin, 2022. "Renewable energy driven heat pumps decarbonization potential in existing residential buildings: Roadmap and case study of Spain," Energy, Elsevier, vol. 247(C).
    10. Shan, Kui & Fan, Cheng & Wang, Jiayuan, 2019. "Model predictive control for thermal energy storage assisted large central cooling systems," Energy, Elsevier, vol. 179(C), pages 916-927.
    11. Zhang, Lizhi & Kuang, Jiyuan & Sun, Bo & Li, Fan & Zhang, Chenghui, 2020. "A two-stage operation optimization method of integrated energy systems with demand response and energy storage," Energy, Elsevier, vol. 208(C).
    12. Guillermo Bejarano & João M. Lemos & Javier Rico-Azagra & Francisco R. Rubio & Manuel G. Ortega, 2022. "Energy Management of Refrigeration Systems with Thermal Energy Storage Based on Non-Linear Model Predictive Control," Mathematics, MDPI, vol. 10(17), pages 1-27, September.
    13. Campos, Gustavo & Liu, Yu & Schmidt, Devon & Yonkoski, Joseph & Colvin, Daniel & Trombly, David M. & El-Farra, Nael H. & Palazoglu, Ahmet, 2021. "Optimal real-time dispatching of chillers and thermal storage tank in a university campus central plant," Applied Energy, Elsevier, vol. 300(C).
    14. Qu, Shengli & Duan, Kaiwen & Guo, Yuxiang & Feng, Yiwei & Wang, Chuang & Xing, Ziwen, 2024. "Real-time optimization of the liquid-cooled data center based on cold plates under different ambient temperatures and thermal loads," Applied Energy, Elsevier, vol. 363(C).
    15. Soler, Mònica Subirats & Sabaté, Carles Civit & Santiago, Víctor Benito & Jabbari, Faryar, 2016. "Optimizing performance of a bank of chillers with thermal energy storage," Applied Energy, Elsevier, vol. 172(C), pages 275-285.
    16. Murphy, M.D. & O’Mahony, M.J. & Upton, J., 2015. "Comparison of control systems for the optimisation of ice storage in a dynamic real time electricity pricing environment," Applied Energy, Elsevier, vol. 149(C), pages 392-403.
    17. Anderson, Austin & Rezaie, Behnaz & Rosen, Marc A., 2021. "An innovative approach to enhance sustainability of a district cooling system by adjusting cold thermal storage and chiller operation," Energy, Elsevier, vol. 214(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu, 2023. "Globally optimal control of hybrid chilled water plants integrated with small-scale thermal energy storage for energy-efficient operation," Energy, Elsevier, vol. 262(PA).
    2. Zou, Wenke & Li, Hangxin & Gao, Dian-ce & Wang, Shengwei, 2025. "A physics-guided self-adaptive chiller sequencing controller of enhanced robustness and energy efficiency accommodating measurement uncertainties," Applied Energy, Elsevier, vol. 389(C).
    3. Fanghan Su & Zhiyuan Wang & Yue Yuan & Chengcheng Song & Kejun Zeng & Yixing Chen & Rongpeng Zhang, 2023. "Enhanced Operation of Ice Storage System for Peak Load Management in Shopping Malls across Diverse Climate Zones," Sustainability, MDPI, vol. 15(20), pages 1-23, October.
    4. Feng, Yiwei & Li, Yanpeng & Qu, Shengli & Wang, Chuang & Han, Yaoxiang & Xing, Ziwen, 2025. "Energy savings of multi-chiller systems comprising hybrid-type compressors combined with thermal energy storage technology: Focusing on compressor isentropic efficiency," Energy, Elsevier, vol. 325(C).
    5. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Cui, Zhitao & You, Zhiqiang & Ma, Xiaowen, 2023. "Robust enhancement of chiller sequencing control for tolerating sensor measurement uncertainties through controlling small-scale thermal energy storage," Energy, Elsevier, vol. 280(C).
    6. Cao, Hui & Lin, Jiajing & Li, Nan, 2023. "Optimal control and energy efficiency evaluation of district ice storage system," Energy, Elsevier, vol. 276(C).
    7. Shan, Kui & Wang, Shengwei & Zhuang, Chaoqun, 2021. "Controlling a large constant speed centrifugal chiller to provide grid frequency regulation: A validation based on onsite tests," Applied Energy, Elsevier, vol. 300(C).
    8. Zhou, Yuekuan & Zheng, Siqian, 2020. "Uncertainty study on thermal and energy performances of a deterministic parameters based optimal aerogel glazing system using machine-learning method," Energy, Elsevier, vol. 193(C).
    9. Khasanzoda, Nasrullo & Safaraliev, Murodbek & Zicmane, Inga & Beryozkina, Svetlana & Rahimov, Jamshed & Ahyoev, Javod, 2022. "Use of smart grid based wind resources in isolated power systems," Energy, Elsevier, vol. 253(C).
    10. Tan, Bifei & Chen, Simin & Liang, Zipeng & Zheng, Xiaodong & Zhu, Yanjin & Chen, Haoyong, 2024. "An iteration-free hierarchical method for the energy management of multiple-microgrid systems with renewable energy sources and electric vehicles," Applied Energy, Elsevier, vol. 356(C).
    11. Hao, Ling & Wei, Mingshan & Xu, Fei & Yang, Xiaochen & Meng, Jia & Song, Panpan & Min, Yong, 2020. "Study of operation strategies for integrating ice-storage district cooling systems into power dispatch for large-scale hydropower utilization," Applied Energy, Elsevier, vol. 261(C).
    12. Zhang, Ce & Hou, Beiran & Li, Minxia & Dang, Chaobin & Chen, Xun & Li, Xiuming & Han, Zongwei, 2025. "Feasibility analysis of multi-mode data center liquid cooling system integrated with Carnot battery energy storage module," Energy, Elsevier, vol. 320(C).
    13. Kung, Kevin S. & Thengane, Sonal K. & Ghoniem, Ahmed F. & Lim, C. Jim & Cao, Yankai & Sokhansanj, Shahabaddine, 2022. "Start-up, shutdown, and transition timescale analysis in biomass reactor operations," Energy, Elsevier, vol. 248(C).
    14. Fan Li & Jingxi Su & Bo Sun, 2023. "An Optimal Scheduling Method for an Integrated Energy System Based on an Improved k-Means Clustering Algorithm," Energies, MDPI, vol. 16(9), pages 1-22, April.
    15. Wunvisa Tipasri & Amnart Suksri & Karthikeyan Velmurugan & Tanakorn Wongwuttanasatian, 2022. "Energy Management for an Air Conditioning System Using a Storage Device to Reduce the On-Peak Power Consumption," Energies, MDPI, vol. 15(23), pages 1-19, November.
    16. Thangavelu, Sundar Raj & Myat, Aung & Khambadkone, Ashwin, 2017. "Energy optimization methodology of multi-chiller plant in commercial buildings," Energy, Elsevier, vol. 123(C), pages 64-76.
    17. Yuan, Yu & Bai, Zhang & Zhou, Shengdong & Zheng, Bo & Hu, Wenxin, 2022. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Flexible demand response characteristics," Applied Energy, Elsevier, vol. 325(C).
    18. Wan, Xin & Luo, Xiong-Lin, 2020. "Economic optimization of chemical processes based on zone predictive control with redundancy variables," Energy, Elsevier, vol. 212(C).
    19. Zhang, Hongji & Ding, Tao & Sun, Yuge & Huang, Yuhan & He, Yuankang & Huang, Can & Li, Fangxing & Xue, Chen & Sun, Xiaoqiang, 2023. "How does load-side re-electrification help carbon neutrality in energy systems: Cost competitiveness analysis and life-cycle deduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    20. Alberta Carella & Luca Del Ferraro & Annunziata D’Orazio, 2022. "Air/Water Heat Pumps in Existing Heating and Hot Water Systems for Better Urban Air Quality and Primary Energy Savings: Scenarios of Two Italian Cities," Energies, MDPI, vol. 16(1), pages 1-15, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:319:y:2025:i:c:s0360544225003949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.