IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v389y2025ics0306261925004489.html
   My bibliography  Save this article

A physics-guided self-adaptive chiller sequencing controller of enhanced robustness and energy efficiency accommodating measurement uncertainties

Author

Listed:
  • Zou, Wenke
  • Li, Hangxin
  • Gao, Dian-ce
  • Wang, Shengwei

Abstract

For multi-chiller systems commonly applied in commercial buildings, a reliable chiller sequencing control strategy makes a crucial contribution to ensure robust and energy-efficient operation. However, the commonly used chiller sequencing control strategy often deviates from expectations significantly due to common sensor measurement uncertainties encountered in practice. To address this problem, this study proposes a physics-guided chiller sequencing control strategy that improves the system's robustness and energy efficiency by adaptively adjusting chiller switching thresholds to accommodate sensor measurement uncertainties. First, a physics-guided fault detection and diagnosis (FDD) supervisor is developed to diagnose the fault types associated with each chiller-ON event under the corresponding switching thresholds. Subsequently, based on the identified fault type, a self-adaptive switching threshold supervisor is developed to adaptively adjust the chiller switching thresholds (i.e., key parameters for determining the chiller stages) for mitigating the adverse impacts resulting from the sensor measurement uncertainties. The test results show that the proposed control strategy can significantly enhance the robustness under negative measurement uncertainties and save the total system energy consumption by up to 7.46 % without sacrificing robustness under positive measurement uncertainties.

Suggested Citation

  • Zou, Wenke & Li, Hangxin & Gao, Dian-ce & Wang, Shengwei, 2025. "A physics-guided self-adaptive chiller sequencing controller of enhanced robustness and energy efficiency accommodating measurement uncertainties," Applied Energy, Elsevier, vol. 389(C).
  • Handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004489
    DOI: 10.1016/j.apenergy.2025.125718
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925004489
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125718?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Zhe & Zhang, Jing & Xiao, Fu & Xu, Kan & Chen, Yongbao, 2025. "Development of a probabilistic cooling load prediction-based robust chiller sequencing strategy and its real-world implementation," Applied Energy, Elsevier, vol. 382(C).
    2. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu, 2023. "Globally optimal control of hybrid chilled water plants integrated with small-scale thermal energy storage for energy-efficient operation," Energy, Elsevier, vol. 262(PA).
    3. Zhuang, Chaoqun & Wang, Shengwei & Shan, Kui, 2020. "A risk-based robust optimal chiller sequencing control strategy for energy-efficient operation considering measurement uncertainties," Applied Energy, Elsevier, vol. 280(C).
    4. Ran, Fengming & Gao, Dian-ce & Zhang, Xu & Chen, Shuyue, 2020. "A virtual sensor based self-adjusting control for HVAC fast demand response in commercial buildings towards smart grid applications," Applied Energy, Elsevier, vol. 269(C).
    5. Gao, Dian-ce & Wang, Shengwei & Shan, Kui, 2016. "In-situ implementation and evaluation of an online robust pump speed control strategy for avoiding low delta-T syndrome in complex chilled water systems of high-rise buildings," Applied Energy, Elsevier, vol. 171(C), pages 541-554.
    6. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Cui, Zhitao & You, Zhiqiang & Ma, Xiaowen, 2023. "Robust enhancement of chiller sequencing control for tolerating sensor measurement uncertainties through controlling small-scale thermal energy storage," Energy, Elsevier, vol. 280(C).
    7. Shan, Kui & Fan, Cheng & Wang, Jiayuan, 2019. "Model predictive control for thermal energy storage assisted large central cooling systems," Energy, Elsevier, vol. 179(C), pages 916-927.
    8. Wu, Si & Yang, Pu & Chen, Guanghao & Wang, Zhe, 2025. "Evaluating seasonal chiller performance using operational data," Applied Energy, Elsevier, vol. 377(PA).
    9. Sun, Shaobo & Shan, Kui & Wang, Shengwei, 2022. "An online robust sequencing control strategy for identical chillers using a probabilistic approach concerning flow measurement uncertainties," Applied Energy, Elsevier, vol. 317(C).
    10. Anderson, Austin & Rezaie, Behnaz & Rosen, Marc A., 2021. "An innovative approach to enhance sustainability of a district cooling system by adjusting cold thermal storage and chiller operation," Energy, Elsevier, vol. 214(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Cui, Zhitao & You, Zhiqiang & Ma, Xiaowen, 2023. "Robust enhancement of chiller sequencing control for tolerating sensor measurement uncertainties through controlling small-scale thermal energy storage," Energy, Elsevier, vol. 280(C).
    2. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu, 2023. "Globally optimal control of hybrid chilled water plants integrated with small-scale thermal energy storage for energy-efficient operation," Energy, Elsevier, vol. 262(PA).
    3. Feng, Yiwei & Li, Yanpeng & Qu, Shengli & Liu, Yishuang & Wang, Chuang & Han, Yaoxiang & Xing, Ziwen, 2025. "Proactive operational strategy of thermal energy storage tank in an industrial multi-chiller system based on chilled water flow difference between supply and demand sides," Energy, Elsevier, vol. 319(C).
    4. Chen, Zhe & Zhang, Jing & Xiao, Fu & Xu, Kan & Chen, Yongbao, 2025. "Development of a probabilistic cooling load prediction-based robust chiller sequencing strategy and its real-world implementation," Applied Energy, Elsevier, vol. 382(C).
    5. Gao, Cheng & Wang, Dan & Sun, Yuying & Wang, Wei & Zhang, Xiuyu, 2023. "Optimal load dispatch of multi-source looped district cooling systems based on energy and hydraulic performances," Energy, Elsevier, vol. 274(C).
    6. Wu, Si & Yang, Pu & Chen, Guanghao & Wang, Zhe, 2025. "Evaluating seasonal chiller performance using operational data," Applied Energy, Elsevier, vol. 377(PA).
    7. Sun, Shaobo & Shan, Kui & Wang, Shengwei, 2022. "An online robust sequencing control strategy for identical chillers using a probabilistic approach concerning flow measurement uncertainties," Applied Energy, Elsevier, vol. 317(C).
    8. Shan, Kui & Wang, Shengwei & Zhuang, Chaoqun, 2021. "Controlling a large constant speed centrifugal chiller to provide grid frequency regulation: A validation based on onsite tests," Applied Energy, Elsevier, vol. 300(C).
    9. Wan, Xin & Luo, Xiong-Lin, 2020. "Economic optimization of chemical processes based on zone predictive control with redundancy variables," Energy, Elsevier, vol. 212(C).
    10. Shunian Qiu & Zhenhai Li & Delong Wang & Zhengwei Li & Yinying Tao, 2022. "Active Optimization of Chilled Water Pump Running Number: Engineering Practice Validation," Sustainability, MDPI, vol. 15(1), pages 1-12, December.
    11. Jangsten, Maria & Lindholm, Torbjörn & Dalenbäck, Jan-Olof, 2020. "Analysis of operational data from a district cooling system and its connected buildings," Energy, Elsevier, vol. 203(C).
    12. Oravec, Juraj & Horváthová, Michaela & Bakošová, Monika, 2020. "Energy efficient convex-lifting-based robust control of a heat exchanger," Energy, Elsevier, vol. 201(C).
    13. Koo, Jabeom & Yoon, Sungmin, 2022. "In-situ sensor virtualization and calibration in building systems," Applied Energy, Elsevier, vol. 325(C).
    14. Kumar, Devesh & Pindoriya, Naran M., 2024. "A chance-constrained stochastic chiller sequencing strategy considering life-expectancy of chiller plant," Energy, Elsevier, vol. 290(C).
    15. Campos, Gustavo & Liu, Yu & Schmidt, Devon & Yonkoski, Joseph & Colvin, Daniel & Trombly, David M. & El-Farra, Nael H. & Palazoglu, Ahmet, 2021. "Optimal real-time dispatching of chillers and thermal storage tank in a university campus central plant," Applied Energy, Elsevier, vol. 300(C).
    16. Zhang, Xu & Sun, Yongjun & Gao, Dian-ce & Zou, Wenke & Fu, Jianping & Ma, Xiaowen, 2022. "Similarity-based grouping method for evaluation and optimization of dataset structure in machine-learning based short-term building cooling load prediction without measurable occupancy information," Applied Energy, Elsevier, vol. 327(C).
    17. Liu, Mingzhe & Ooka, Ryozo & Choi, Wonjun & Ikeda, Shintaro, 2019. "Experimental and numerical investigation of energy saving potential of centralized and decentralized pumping systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    18. Lee, Chia-Yen & Li, Yao-Wen & Chang, Chih-Chun, 2025. "Multi-agent reinforcement learning for chiller system prediction and energy-saving optimization in semiconductor manufacturing," International Journal of Production Economics, Elsevier, vol. 280(C).
    19. Fanghan Su & Zhiyuan Wang & Yue Yuan & Chengcheng Song & Kejun Zeng & Yixing Chen & Rongpeng Zhang, 2023. "Enhanced Operation of Ice Storage System for Peak Load Management in Shopping Malls across Diverse Climate Zones," Sustainability, MDPI, vol. 15(20), pages 1-23, October.
    20. Ragosebo Kgaugelo Modise & Khumbulani Mpofu & Olukorede Tijani Adenuga, 2021. "Energy and Carbon Emission Efficiency Prediction: Applications in Future Transport Manufacturing," Energies, MDPI, vol. 14(24), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.