IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v316y2025ics0360544225002725.html
   My bibliography  Save this article

Effects of potassium salt on the combustion characteristics of corn stalk with fast-heating rate: Insights with OH-PLIF measurement and DFT calculation

Author

Listed:
  • Song, Yawei
  • Su, Sheng
  • Zhao, Zheng
  • Lin, Qifu
  • Xu, Kai
  • Xu, Jun
  • Jiang, Long
  • Wang, Yi
  • Hu, Song
  • Xiang, Jun

Abstract

The effect of potassium salt on biomass ignition and combustion behaviors was investigated using a fast-heating rate platform with Planar Laser-Induced Fluorescence of OH radicals. Acid-washed corn stalks (CS-aw) and CS-aw impregnated with varying mass ratios of K2CO3 (CS-1% K, CS-3% K, and CS-5% K) were studied. Theoretical calculations using density functional theory at the M06-2X/6-31G(d,p)//CBS-QB3 level were performed to reveal the effects of potassium salt on the CS combustion process. The results showed that the order of increasing ignition delay time was CS-aw < CS-1% K < CS-3% K, indicating prolonged ignition of CS with potassium salt, with no ignition occurring for CS-5% K. Similarly, K2CO3-loaded CS samples exhibited lower peak temperatures compared to CS-aw. However, in the later stages of combustion, CS-1% K and CS-3% K had shorter char burnout times and higher char conversion rates than CS-aw. The increase in K2CO3 decreased OH intensity and the duration of the OH signal, but the presence of K promoted the generation of PAHs. This corresponded to the lower combustion intensity of K2CO3-loaded CS samples in the early combustion stage. The TGA experiment indicated that the maximum weight loss temperature for K2CO3-loaded CS samples shifted to a lower temperature range, and increased addition of K2CO3 led to a reduction in burnout temperature. Thus, unlike under low heating rates, the addition of K2CO3 had a dual effect on CS combustion under fast-heating rate: it inhibited combustion in the early stage while promoting it in the later stage. Quantum chemical calculations support this, suggesting that potassium salts promote the formation of larger and more stable hydrocarbons in the early stage of CS combustion under fast-heating rate rather than the cracking of these molecules into active radicals such as OH radicals through H + O2→OH + O reaction, and thus the ignition and early-stage combustion were inhibited for K2CO3-loaded CS samples.

Suggested Citation

  • Song, Yawei & Su, Sheng & Zhao, Zheng & Lin, Qifu & Xu, Kai & Xu, Jun & Jiang, Long & Wang, Yi & Hu, Song & Xiang, Jun, 2025. "Effects of potassium salt on the combustion characteristics of corn stalk with fast-heating rate: Insights with OH-PLIF measurement and DFT calculation," Energy, Elsevier, vol. 316(C).
  • Handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225002725
    DOI: 10.1016/j.energy.2025.134630
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225002725
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134630?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Wei & Chen, Jianfeng & Yang, Wei & Jiang, Hao & Zhu, Youjian & Ti, Shuguang & Shao, Jing'ai & Chen, Hanping, 2024. "Effect of sludge-based additive on particulate matter emission during the combustion of agricultural biomass pellet," Energy, Elsevier, vol. 313(C).
    2. Song, Yawei & Su, Sheng & Chen, Yifeng & Liu, Yushuai & Zhao, Zheng & Wang, Jingyan & Ren, Qiangqiang & Han, Hengda & Xu, Kai & Xu, Jun & Jiang, Long & Wang, Yi & Hu, Song & Xiang, Jun, 2023. "Effects of moisture on soot generation and ignition of coal particle: Investigation and evaluation with OH-planar laser induced fluorescence," Energy, Elsevier, vol. 278(PA).
    3. Li, Tao & Schiemann, Martin & Köser, Jan & Dreizler, Andreas & Böhm, Benjamin, 2021. "Experimental investigations of single particle and particle group combustion in a laminar flow reactor using simultaneous volumetric OH-LIF imaging and diffuse backlight-illumination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    4. Zeng, Kuo & Wang, Biao & Xia, Shengpeng & Cui, Chaoxian & Wang, Chenyang & Zheng, Anqing & Zhao, Kun & Zhao, Zengli & Li, Haibin & Isobaev, M.D., 2022. "Towards directional pyrolysis of xylan: Understanding the roles of alkali/alkaline earth metals and pyrolysis temperature," Energy, Elsevier, vol. 254(PA).
    5. Hu, Junhao & Qi, Nianxiang & Yang, Haiping & Liu, Sumin & Chen, Wei & Cheng, Wei & Chen, Hanping, 2024. "Investigation on steam co-gasification of torrefied biomass and coal: Thermal behavior, reactivity, product characteristic and synergy," Energy, Elsevier, vol. 313(C).
    6. Song, Yawei & Su, Sheng & Liu, Yushuai & Zhao, Zheng & Xu, Kai & Xu, Jun & Jiang, Long & Wang, Yi & Hu, Song & Xiang, Jun, 2024. "Characteristics of OH formation during single coal particle ignition and volatile combustion in O2/N2 and O2/CO2 atmospheres," Energy, Elsevier, vol. 288(C).
    7. Yu, Junqin & Xia, Weidong & Areeprasert, Chinnathan & Ding, Lu & Umeki, Kentaro & Yu, Guangsuo, 2022. "Catalytic effects of inherent AAEM on char gasification: A mechanism study using in-situ Raman," Energy, Elsevier, vol. 238(PC).
    8. Xia, Mingwei & Chen, Zhiqiang & Chen, Yingquan & Yang, Haiping & Chen, Wei & Chen, Hanping, 2024. "Effect of various potassium agents on product distributions and biochar carbon sequestration of biomass pyrolysis," Energy, Elsevier, vol. 289(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Yawei & Su, Sheng & Liu, Yushuai & Zhao, Zheng & Xu, Kai & Xu, Jun & Jiang, Long & Wang, Yi & Hu, Song & Xiang, Jun, 2024. "Characteristics of OH formation during single coal particle ignition and volatile combustion in O2/N2 and O2/CO2 atmospheres," Energy, Elsevier, vol. 288(C).
    2. Cheng, Huiyun & Huo, Ruiqiang & Xue, Nan & Chen, Derui & Liu, Yu & Zhang, Hu & Wang, Huaiyu & Zhu, Hui & Yin, Jiao, 2025. "Synergistic promotion of K and Ca in the efficient production of H2-rich syngas from cotton stalks," Renewable Energy, Elsevier, vol. 239(C).
    3. Gan, Xiaowei & Chen, Zhengjie & Ma, Wenhui & Luo, Pen & Xie, Rui, 2024. "Comprehensive evaluation of the physicochemical properties and pyrolysis mechanism of products from the slow pyrolysis of waste coffee shells," Renewable Energy, Elsevier, vol. 237(PB).
    4. Li, Ruochen & Meng, Tianxin & Song, Gongxiang & Huang, Dexin & Hu, Song & Jiang, Long & Xu, Jun & Wang, Yi & Su, Sheng & Xiang, Jun, 2024. "A GIS-based assessment of the carbon emission reduction potential of the solar-enhanced char-cycling biomass pyrolysis process in China," Renewable Energy, Elsevier, vol. 237(PA).
    5. Feng, Dongdong & Shang, Qi & Song, Yidan & Wang, Youxin & Cheng, Zhenyu & Zhao, Yijun & Sun, Shaozeng, 2024. "In-situ catalytic synergistic interaction between self-contained K and added Ni in biomass fast/slow pyrolysis," Renewable Energy, Elsevier, vol. 222(C).
    6. Yuan, Mengfan & Zhu, Wenkun & Wang, Zhuozhi & Guo, Yuting & Li, Gaoyang & Chen, Yongxin & Peng, Jiangbo & Sun, Rui, 2024. "Diagnostic investigation of devolatilization, ignition, and flame fluctuation during laminar oxy-coal combustion," Energy, Elsevier, vol. 289(C).
    7. Hu, Junhao & Qi, Nianxiang & Yang, Haiping & Liu, Sumin & Chen, Wei & Cheng, Wei & Chen, Hanping, 2024. "Investigation on steam co-gasification of torrefied biomass and coal: Thermal behavior, reactivity, product characteristic and synergy," Energy, Elsevier, vol. 313(C).
    8. Ruan, Renhui & Wang, Guan & Li, Shuaishuai & Wang, Min & Lin, Hui & Tan, Houzhang & Wang, Xuebin & Liu, Feng, 2024. "The effect of alkali and alkaline earth metals (AAEMs) on combustion and PM formation during oxy-fuel combustion of coal rich in AAEMs," Energy, Elsevier, vol. 293(C).
    9. Song, Yawei & Su, Sheng & Chen, Yifeng & Liu, Yushuai & Zhao, Zheng & Wang, Jingyan & Ren, Qiangqiang & Han, Hengda & Xu, Kai & Xu, Jun & Jiang, Long & Wang, Yi & Hu, Song & Xiang, Jun, 2023. "Effects of moisture on soot generation and ignition of coal particle: Investigation and evaluation with OH-planar laser induced fluorescence," Energy, Elsevier, vol. 278(PA).
    10. Hu, Fan & Xiong, Biao & Huang, Xiaohong & Liu, Zhaohui, 2023. "Theoretical analysis and experimental verification of diminishing the diffusion influence on determination of char oxidation kinetics by thermo-gravimetric analysis," Energy, Elsevier, vol. 275(C).
    11. Zhu, Wenkun & Li, Xiaohui & Peng, Jiangbo & Sun, Rui & Wang, Zhuozhi & Zhang, Lei & Cao, Zhen & Yu, Xin, 2022. "Dynamic and kinetic studies on the oxy-coal combustion using multi-parameter high-speed diagnostics," Applied Energy, Elsevier, vol. 327(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225002725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.