Using extreme value theory to take better account of peak demand when generating typical periods by clustering for district heating networks design optimisation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2025.134522
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
- Nahmmacher, Paul & Schmid, Eva & Hirth, Lion & Knopf, Brigitte, 2016. "Carpe diem: A novel approach to select representative days for long-term power system modeling," Energy, Elsevier, vol. 112(C), pages 430-442.
- Bracco, Stefano & Dentici, Gabriele & Siri, Silvia, 2016. "DESOD: a mathematical programming tool to optimally design a distributed energy system," Energy, Elsevier, vol. 100(C), pages 298-309.
- Wang, Chao & Du, Yuyan & Li, Hailong & Wallin, Fredrik & Min, Geyong, 2019. "New methods for clustering district heating users based on consumption patterns," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Stock, Jan & Schmidt, Till & Xhonneux, André & Müller, Dirk, 2024. "Optimisation of district heating transformation for the efficient integration of a low-temperature heat source," Energy, Elsevier, vol. 308(C).
- Teichgraeber, Holger & Lindenmeyer, Constantin P. & Baumgärtner, Nils & Kotzur, Leander & Stolten, Detlef & Robinius, Martin & Bardow, André & Brandt, Adam R., 2020. "Extreme events in time series aggregation: A case study for optimal residential energy supply systems," Applied Energy, Elsevier, vol. 275(C).
- Wang, Jing & Kang, Lixia & Liu, Yongzhong, 2022. "A multi-objective approach to determine time series aggregation strategies for optimal design of multi-energy systems," Energy, Elsevier, vol. 258(C).
- Averfalk, Helge & Werner, Sven, 2020. "Economic benefits of fourth generation district heating," Energy, Elsevier, vol. 193(C).
- Świerzewski, Mateusz & Kalina, Jacek, 2020. "Optimisation of biomass-fired cogeneration plants using ORC technology," Renewable Energy, Elsevier, vol. 159(C), pages 195-214.
- Gonzalez-Salazar, Miguel & Klossek, Julia & Dubucq, Pascal & Punde, Thomas, 2023. "Portfolio optimization in district heating: Merit order or mixed integer linear programming?," Energy, Elsevier, vol. 265(C).
- Stock, Jan & Xhonneux, André & Müller, Dirk, 2024. "Optimisation of district heating network separation for the utilisation of heat source potentials," Energy, Elsevier, vol. 303(C).
- van der Heijde, Bram & Vandermeulen, Annelies & Salenbien, Robbe & Helsen, Lieve, 2019. "Representative days selection for district energy system optimisation: a solar district heating system with seasonal storage," Applied Energy, Elsevier, vol. 248(C), pages 79-94.
- Hering, Dominik & Xhonneux, André & Müller, Dirk, 2021. "Design optimization of a heating network with multiple heat pumps using mixed integer quadratically constrained programming," Energy, Elsevier, vol. 226(C).
- Hoffmann, Maximilian & Priesmann, Jan & Nolting, Lars & Praktiknjo, Aaron & Kotzur, Leander & Stolten, Detlef, 2021. "Typical periods or typical time steps? A multi-model analysis to determine the optimal temporal aggregation for energy system models," Applied Energy, Elsevier, vol. 304(C).
- Jodeiri, A.M. & Goldsworthy, M.J. & Buffa, S. & Cozzini, M., 2022. "Role of sustainable heat sources in transition towards fourth generation district heating – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Gabrielli, Paolo & Gazzani, Matteo & Martelli, Emanuele & Mazzotti, Marco, 2018. "Optimal design of multi-energy systems with seasonal storage," Applied Energy, Elsevier, vol. 219(C), pages 408-424.
- Teichgraeber, Holger & Brandt, Adam R., 2022. "Time-series aggregation for the optimization of energy systems: Goals, challenges, approaches, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
- Rojer, Jim & Janssen, Femke & van der Klauw, Thijs & van Rooyen, Jacobus, 2024. "Integral techno-economic design & operational optimization for district heating networks with a Mixed Integer Linear Programming strategy," Energy, Elsevier, vol. 308(C).
- Mavromatidis, Georgios & Petkov, Ivalin, 2021. "MANGO: A novel optimization model for the long-term, multi-stage planning of decentralized multi-energy systems," Applied Energy, Elsevier, vol. 288(C).
- Short, Michael & Crosbie, Tracey & Dawood, Muneeb & Dawood, Nashwan, 2017. "Load forecasting and dispatch optimisation for decentralised co-generation plant with dual energy storage," Applied Energy, Elsevier, vol. 186(P3), pages 304-320.
- Veyron, Mathilde & Voirand, Antoine & Mion, Nicolas & Maragna, Charles & Mugnier, Daniel & Clausse, Marc, 2022. "Dynamic exergy and economic assessment of the implementation of seasonal underground thermal energy storage in existing solar district heating," Energy, Elsevier, vol. 261(PA).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hilbers, Adriaan P. & Brayshaw, David J. & Gandy, Axel, 2023. "Reducing climate risk in energy system planning: A posteriori time series aggregation for models with storage," Applied Energy, Elsevier, vol. 334(C).
- Hoffmann, Maximilian & Kotzur, Leander & Stolten, Detlef, 2022. "The Pareto-optimal temporal aggregation of energy system models," Applied Energy, Elsevier, vol. 315(C).
- Teichgraeber, Holger & Brandt, Adam R., 2022. "Time-series aggregation for the optimization of energy systems: Goals, challenges, approaches, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
- Gonzato, Sebastian & Bruninx, Kenneth & Delarue, Erik, 2021. "Long term storage in generation expansion planning models with a reduced temporal scope," Applied Energy, Elsevier, vol. 298(C).
- Hoffmann, Maximilian & Priesmann, Jan & Nolting, Lars & Praktiknjo, Aaron & Kotzur, Leander & Stolten, Detlef, 2021. "Typical periods or typical time steps? A multi-model analysis to determine the optimal temporal aggregation for energy system models," Applied Energy, Elsevier, vol. 304(C).
- Tian, Zhe & Wang, Yi & Li, Xiaoyuan & Wen, Li & Niu, Jide & Lu, Yakai, 2024. "Typical daily scenario extraction method based on key features to promote building renewable energy system optimization efficiency," Renewable Energy, Elsevier, vol. 236(C).
- Teichgraeber, Holger & Küpper, Lucas Elias & Brandt, Adam R., 2021. "Designing reliable future energy systems by iteratively including extreme periods in time-series aggregation," Applied Energy, Elsevier, vol. 304(C).
- Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
- Wang, Jing & Kang, Lixia & Liu, Yongzhong, 2022. "A multi-objective approach to determine time series aggregation strategies for optimal design of multi-energy systems," Energy, Elsevier, vol. 258(C).
- Kuepper, Lucas Elias & Teichgraeber, Holger & Baumgärtner, Nils & Bardow, André & Brandt, Adam R., 2022. "Wind data introduce error in time-series reduction for capacity expansion modelling," Energy, Elsevier, vol. 256(C).
- Lei, Zijian & Yu, Hao & Li, Peng & Ji, Haoran & Yan, Jinyue & Song, Guanyu & Wang, Chengshan, 2024. "A compact time horizon compression method for planning community integrated energy systems with long-term energy storage," Applied Energy, Elsevier, vol. 361(C).
- Müller, Inga M., 2022. "Energy system modeling with aggregated time series: A profiling approach," Applied Energy, Elsevier, vol. 322(C).
- Timo Kannengießer & Maximilian Hoffmann & Leander Kotzur & Peter Stenzel & Fabian Schuetz & Klaus Peters & Stefan Nykamp & Detlef Stolten & Martin Robinius, 2019. "Reducing Computational Load for Mixed Integer Linear Programming: An Example for a District and an Island Energy System," Energies, MDPI, vol. 12(14), pages 1-27, July.
- ZareAfifi, Farzan & Mahmud, Zabir & Kurtz, Sarah, 2023. "Diurnal, physics-based strategy for computationally efficient capacity-expansion optimizations for solar-dominated grids," Energy, Elsevier, vol. 279(C).
- Malcher, Xenia & Gonzalez-Salazar, Miguel, 2024. "Strategies for decarbonizing European district heating: Evaluation of their effectiveness in Sweden, France, Germany, and Poland," Energy, Elsevier, vol. 306(C).
- Klemm, Christian & Wiese, Frauke & Vennemann, Peter, 2023. "Model-based run-time and memory reduction for a mixed-use multi-energy system model with high spatial resolution," Applied Energy, Elsevier, vol. 334(C).
- Göke, Leonard & Kendziorski, Mario, 2022. "Adequacy of time-series reduction for renewable energy systems," Energy, Elsevier, vol. 238(PA).
- Reveron Baecker, Beneharo & Candas, Soner, 2022. "Co-optimizing transmission and active distribution grids to assess demand-side flexibilities of a carbon-neutral German energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
- Wakui, Tetsuya & Akai, Kazuki & Yokoyama, Ryohei, 2022. "Shrinking and receding horizon approaches for long-term operational planning of energy storage and supply systems," Energy, Elsevier, vol. 239(PD).
- de Guibert, Paul & Shirizadeh, Behrang & Quirion, Philippe, 2020.
"Variable time-step: A method for improving computational tractability for energy system models with long-term storage,"
Energy, Elsevier, vol. 213(C).
- Paul de Guibert & Behrang Shirizadeh & Philippe Quirion, 2020. "Variable time-step: A method for improving computational tractability for energy system models with long-term storage," Post-Print hal-03100309, HAL.
More about this item
Keywords
District heating network; Clustering; Optimisation; Demand time series; Peaks; Anomalies;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:316:y:2025:i:c:s0360544225001641. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.