IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v226y2021ics0360544221006332.html
   My bibliography  Save this article

Design optimization of a heating network with multiple heat pumps using mixed integer quadratically constrained programming

Author

Listed:
  • Hering, Dominik
  • Xhonneux, André
  • Müller, Dirk

Abstract

District heating is a state of the art technology for efficient supply of heat. Modern 4th generation and 5th generation district heating networks can be used to integrate sources of waste heat, which allows efficient operation. The design of such heating networks is subject of many optimization models. Most optimization models focus on energy flows and result in Mixed Integer Linear Programs. This requires simplifications, where temperatures and mass flow rates are neglected or simplified. This work presents a Mixed Integer Quadratically Constrained Program with temperature constraints. A case study is presented, where the integration of low temperature waste heat in a district heating network is optimized. In this case study the positioning of heat pumps at the supply or at the consumers influences network operation. The results show a trade-off between economical and ecological optimal solutions with a range of total annualized costs from 120,000 EUR/a to 307,000 EUR/a and a range of CO2-Emissions from 193 t/a to 605 t/a. Furthermore, the influence of design decisions on the optimal operation is demonstrated. All in all, the quadratic model formulation stresses the influence of temperatures on the optimization outcome and offers pareto optimal solutions for the design of the presented case study.

Suggested Citation

  • Hering, Dominik & Xhonneux, André & Müller, Dirk, 2021. "Design optimization of a heating network with multiple heat pumps using mixed integer quadratically constrained programming," Energy, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221006332
    DOI: 10.1016/j.energy.2021.120384
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221006332
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120384?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buffa, Simone & Cozzini, Marco & D’Antoni, Matteo & Baratieri, Marco & Fedrizzi, Roberto, 2019. "5th generation district heating and cooling systems: A review of existing cases in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 504-522.
    2. Wahlroos, Mikko & Pärssinen, Matti & Rinne, Samuli & Syri, Sanna & Manner, Jukka, 2018. "Future views on waste heat utilization – Case of data centers in Northern Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P2), pages 1749-1764.
    3. Mansoor, Muhammad & Stadler, Michael & Zellinger, Michael & Lichtenegger, Klaus & Auer, Hans & Cosic, Armin, 2021. "Optimal planning of thermal energy systems in a microgrid with seasonal storage and piecewise affine cost functions," Energy, Elsevier, vol. 215(PA).
    4. Hering, Dominik & Cansev, Mehmet Ege & Tamassia, Eugenio & Xhonneux, André & Müller, Dirk, 2021. "Temperature control of a low-temperature district heating network with Model Predictive Control and Mixed-Integer Quadratically Constrained Programming," Energy, Elsevier, vol. 224(C).
    5. Fang, Hao & Xia, Jianjun & Jiang, Yi, 2015. "Key issues and solutions in a district heating system using low-grade industrial waste heat," Energy, Elsevier, vol. 86(C), pages 589-602.
    6. Molyneaux, A. & Leyland, G. & Favrat, D., 2010. "Environomic multi-objective optimisation of a district heating network considering centralized and decentralized heat pumps," Energy, Elsevier, vol. 35(2), pages 751-758.
    7. Li, Fan & Sun, Bo & Zhang, Chenghui & Zhang, Lizhi, 2018. "Operation optimization for combined cooling, heating, and power system with condensation heat recovery," Applied Energy, Elsevier, vol. 230(C), pages 305-316.
    8. Bünning, Felix & Wetter, Michael & Fuchs, Marcus & Müller, Dirk, 2018. "Bidirectional low temperature district energy systems with agent-based control: Performance comparison and operation optimization," Applied Energy, Elsevier, vol. 209(C), pages 502-515.
    9. Wirtz, Marco & Kivilip, Lukas & Remmen, Peter & Müller, Dirk, 2020. "5th Generation District Heating: A novel design approach based on mathematical optimization," Applied Energy, Elsevier, vol. 260(C).
    10. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    11. Wahlroos, Mikko & Pärssinen, Matti & Manner, Jukka & Syri, Sanna, 2017. "Utilizing data center waste heat in district heating – Impacts on energy efficiency and prospects for low-temperature district heating networks," Energy, Elsevier, vol. 140(P1), pages 1228-1238.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Xuejing & Shi, Zhiyuan & Wang, Yaran & Zhang, Huan & Liu, Huzhen, 2023. "Thermo-hydraulic condition optimization of large-scale complex district heating network: A case study of Tianjin," Energy, Elsevier, vol. 266(C).
    2. Hering, Dominik & Faller, Michael R. & Xhonneux, André & Müller, Dirk, 2022. "Operational optimization of a 4th generation district heating network with mixed integer quadratically constrained programming," Energy, Elsevier, vol. 250(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Grzegórska & Piotr Rybarczyk & Valdas Lukoševičius & Joanna Sobczak & Andrzej Rogala, 2021. "Smart Asset Management for District Heating Systems in the Baltic Sea Region," Energies, MDPI, vol. 14(2), pages 1-25, January.
    2. Angelidis, O. & Ioannou, A. & Friedrich, D. & Thomson, A. & Falcone, G., 2023. "District heating and cooling networks with decentralised energy substations: Opportunities and barriers for holistic energy system decarbonisation," Energy, Elsevier, vol. 269(C).
    3. Jodeiri, A.M. & Goldsworthy, M.J. & Buffa, S. & Cozzini, M., 2022. "Role of sustainable heat sources in transition towards fourth generation district heating – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Hering, Dominik & Faller, Michael R. & Xhonneux, André & Müller, Dirk, 2022. "Operational optimization of a 4th generation district heating network with mixed integer quadratically constrained programming," Energy, Elsevier, vol. 250(C).
    5. Wirtz, Marco, 2023. "nPro: A web-based planning tool for designing district energy systems and thermal networks," Energy, Elsevier, vol. 268(C).
    6. Pietro Catrini & Tancredi Testasecca & Alessandro Buscemi & Antonio Piacentino, 2022. "Exergoeconomics as a Cost-Accounting Method in Thermal Grids with the Presence of Renewable Energy Producers," Sustainability, MDPI, vol. 14(7), pages 1-27, March.
    7. Gudmundsson, Oddgeir & Schmidt, Ralf-Roman & Dyrelund, Anders & Thorsen, Jan Eric, 2022. "Economic comparison of 4GDH and 5GDH systems – Using a case study," Energy, Elsevier, vol. 238(PA).
    8. Reiners, Tobias & Gross, Michel & Altieri, Lisa & Wagner, Hermann-Josef & Bertsch, Valentin, 2021. "Heat pump efficiency in fifth generation ultra-low temperature district heating networks using a wastewater heat source," Energy, Elsevier, vol. 236(C).
    9. Pipiciello, Mauro & Caldera, Matteo & Cozzini, Marco & Ancona, Maria A. & Melino, Francesco & Di Pietra, Biagio, 2021. "Experimental characterization of a prototype of bidirectional substation for district heating with thermal prosumers," Energy, Elsevier, vol. 223(C).
    10. Licklederer, Thomas & Hamacher, Thomas & Kramer, Michael & Perić, Vedran S., 2021. "Thermohydraulic model of Smart Thermal Grids with bidirectional power flow between prosumers," Energy, Elsevier, vol. 230(C).
    11. Abugabbara, Marwan & Javed, Saqib & Johansson, Dennis, 2022. "A simulation model for the design and analysis of district systems with simultaneous heating and cooling demands," Energy, Elsevier, vol. 261(PA).
    12. Gjoka, Kristian & Rismanchi, Behzad & Crawford, Robert H., 2023. "Fifth-generation district heating and cooling systems: A review of recent advancements and implementation barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    13. Li, Haoran & Hou, Juan & Hong, Tianzhen & Ding, Yuemin & Nord, Natasa, 2021. "Energy, economic, and environmental analysis of integration of thermal energy storage into district heating systems using waste heat from data centres," Energy, Elsevier, vol. 219(C).
    14. Meibodi, Saleh S. & Loveridge, Fleur, 2022. "The future role of energy geostructures in fifth generation district heating and cooling networks," Energy, Elsevier, vol. 240(C).
    15. Selva Calixto & Marco Cozzini & Giampaolo Manzolini, 2021. "Modelling of an Existing Neutral Temperature District Heating Network: Detailed and Approximate Approaches," Energies, MDPI, vol. 14(2), pages 1-16, January.
    16. Wirtz, Marco & Kivilip, Lukas & Remmen, Peter & Müller, Dirk, 2020. "5th Generation District Heating: A novel design approach based on mathematical optimization," Applied Energy, Elsevier, vol. 260(C).
    17. Lund, Henrik & Østergaard, Poul Alberg & Nielsen, Tore Bach & Werner, Sven & Thorsen, Jan Eric & Gudmundsson, Oddgeir & Arabkoohsar, Ahmad & Mathiesen, Brian Vad, 2021. "Perspectives on fourth and fifth generation district heating," Energy, Elsevier, vol. 227(C).
    18. Stanislav Chicherin & Vladislav Mašatin & Andres Siirde & Anna Volkova, 2020. "Method for Assessing Heat Loss in A District Heating Network with A Focus on the State of Insulation and Actual Demand for Useful Energy," Energies, MDPI, vol. 13(17), pages 1-15, September.
    19. Millar, Michael-Allan & Yu, Zhibin & Burnside, Neil & Jones, Greg & Elrick, Bruce, 2021. "Identification of key performance indicators and complimentary load profiles for 5th generation district energy networks," Applied Energy, Elsevier, vol. 291(C).
    20. Du, Han & Zhou, Xinlei & Nord, Natasa & Carden, Yale & Ma, Zhenjun, 2023. "A new data mining strategy for performance evaluation of a shared energy recovery system integrated with data centres and district heating networks," Energy, Elsevier, vol. 285(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:226:y:2021:i:c:s0360544221006332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.