IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v315y2025ics0360544225000660.html
   My bibliography  Save this article

Green treatment of waste Crops: Porous and natural channel corn stalk electrode modified by orange peel for high-performance vanadium redox flow batteries

Author

Listed:
  • Wang, Junyao
  • Ren, Dingyi
  • Liu, Huan
  • Hou, Qi
  • Shu, Jianlang
  • Wang, Taipeng
  • Li, Yaqun

Abstract

Electrodes in vanadium redox flow batteries (VRFBs) are inextricably linked to the versatility of VRFBs. Subsequent research revealed that batteries using bio-based modified carbon-felt (CF) exhibit extreme polarization. The research process ignored the polluting of the production process of the CF. In this study, the corn stalks were pre-treated with ligninase and hemicellulase to obtain channel corn stalks (CCS) with a low polarization effect. Orange peels were then used as the carbon source, sugar was used to activate the slurry, in which the CCS was modified by orange peel electrode (CCS500-14). It was shown in several ways that CCS500-14 enhances the diffusion effect on VO2+ ions with coefficients consistently in the range of 10−12-10−10cm2s−1. CCS500-14 has a specific capacitance of 413 F/g at 1 A/g, and after the current density is expanded by 30 times achieves 285 F/g, 69 % of the original. The VRFB cell with CCS500-14 achieve energy efficiency of 87.64 % in 500 cycles at 100 mA cm−2, significantly higher than the CF-based VRFB cell (79 %). This study demonstrates that the use of orange peel carbon-modified corn stalk electrode is practicable in the application of advanced VRFB energy storage systems, providing a new idea for replacing the CF electrode.

Suggested Citation

  • Wang, Junyao & Ren, Dingyi & Liu, Huan & Hou, Qi & Shu, Jianlang & Wang, Taipeng & Li, Yaqun, 2025. "Green treatment of waste Crops: Porous and natural channel corn stalk electrode modified by orange peel for high-performance vanadium redox flow batteries," Energy, Elsevier, vol. 315(C).
  • Handle: RePEc:eee:energy:v:315:y:2025:i:c:s0360544225000660
    DOI: 10.1016/j.energy.2025.134424
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225000660
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134424?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Kan, Tao & Strezov, Vladimir & Evans, Tim J., 2016. "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1126-1140.
    2. Roy, Poritosh & Dias, Goretty, 2017. "Prospects for pyrolysis technologies in the bioenergy sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 59-69.
    3. Yuriy Leonidovich Zhukovskiy & Daria Evgenievna Batueva & Alexandra Dmitrievna Buldysko & Bernard Gil & Valeriia Vladimirovna Starshaia, 2021. "Fossil Energy in the Framework of Sustainable Development: Analysis of Prospects and Development of Forecast Scenarios," Energies, MDPI, vol. 14(17), pages 1-28, August.
    4. Kebede, Abraham Alem & Kalogiannis, Theodoros & Van Mierlo, Joeri & Berecibar, Maitane, 2022. "A comprehensive review of stationary energy storage devices for large scale renewable energy sources grid integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    5. Wei Peng & Fabian Wagner & M. V. Ramana & Haibo Zhai & Mitchell J. Small & Carole Dalin & Xin Zhang & Denise L. Mauzerall, 2018. "Managing China’s coal power plants to address multiple environmental objectives," Nature Sustainability, Nature, vol. 1(11), pages 693-701, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magdalena Matusiak & Radosław Ślęzak & Stanisław Ledakowicz, 2020. "Thermogravimetric Kinetics of Selected Energy Crops Pyrolysis," Energies, MDPI, vol. 13(15), pages 1-15, August.
    2. Mohsin Raza & Abrar Inayat & Basim Abu-Jdayil, 2021. "Crude Glycerol as a Potential Feedstock for Future Energy via Thermochemical Conversion Processes: A Review," Sustainability, MDPI, vol. 13(22), pages 1-27, November.
    3. Lee, Seokhwan & Woo, Sang Hee & Kim, Yongrae & Choi, Young & Kang, Kernyong, 2020. "Combustion and emission characteristics of a diesel-powered generator running with N-butanol/coffee ground pyrolysis oil/diesel blended fuel," Energy, Elsevier, vol. 206(C).
    4. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    5. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    6. Phuakpunk, Kiattikhoon & Chalermsinsuwan, Benjapon & Assabumrungrat, Suttichai, 2022. "Pyrolysis kinetic parameters investigation of single and tri-component biomass: Models fitting via comparative model-free methods," Renewable Energy, Elsevier, vol. 182(C), pages 494-507.
    7. Gholizadeh, Mortaza & Hu, Xun & Liu, Qing, 2019. "A mini review of the specialties of the bio-oils produced from pyrolysis of 20 different biomasses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    8. Zhang, Chenting & Chao, Li & Zhang, Zhanming & Zhang, Lijun & Li, Qingyin & Fan, Huailin & Zhang, Shu & Liu, Qing & Qiao, Yingyun & Tian, Yuanyu & Wang, Yi & Hu, Xun, 2021. "Pyrolysis of cellulose: Evolution of functionalities and structure of bio-char versus temperature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. JoungDu Shin & SangWon Park & Changyoon Jeong, 2020. "Assessment of Agro-Environmental Impacts for Supplemented Methods to Biochar Manure Pellets during Rice ( Oryza sativa L.) Cultivation," Energies, MDPI, vol. 13(8), pages 1-14, April.
    10. Mehmet C. Yagci & Thomas Feldmann & Elmar Bollin & Michael Schmidt & Wolfgang G. Bessler, 2022. "Aging Characteristics of Stationary Lithium-Ion Battery Systems with Serial and Parallel Cell Configurations," Energies, MDPI, vol. 15(11), pages 1-19, May.
    11. Zhang, Tiantian & Rivas, Álvaro González & Fernandez, Xavier Fragua & Li, Na & Gucho, Eyerusalem & Zhu, Lin & Bijl, Anton & Llacuna, Joan Llorens & He, Songbo, 2024. "Fast pyrolysis of paper sludge in a continuous stirred-tank reactor and liquid-liquid extraction of benzenoid aromatics from fast pyrolysis bio-liquid," Renewable Energy, Elsevier, vol. 236(C).
    12. Zhai, Yijie & Ma, Xiaotian & Gao, Feng & Zhang, Tianzuo & Hong, Jinglan & Zhang, Xu & Yuan, Xueliang & Li, Xiangzhi, 2020. "Is energy the key to pursuing clean air and water at the city level? A case study of Jinan City, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Chen, Xiangmeng & Shafizadeh, Alireza & Shahbeik, Hossein & Nadian, Mohammad Hossein & Golvirdizadeh, Milad & Peng, Wanxi & Lam, Su Shiung & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2025. "Enhanced bio-oil production from biomass catalytic pyrolysis using machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    14. Efstathios E. Michaelides, 2025. "Energy Efficiency and the Transition to Renewables—Building Communities of the Future," Energies, MDPI, vol. 18(7), pages 1-16, April.
    15. Wang, Chu & Yuan, Xinhua & Li, Shanshan & Zhu, Xifeng, 2021. "Enrichment of phenolic products in walnut shell pyrolysis bio-oil by combining torrefaction pretreatment with fractional condensation," Renewable Energy, Elsevier, vol. 169(C), pages 1317-1329.
    16. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Barta-Rajnai, E. & Wang, L. & Sebestyén, Z. & Barta, Z. & Khalil, R. & Skreiberg, Ø. & Grønli, M. & Jakab, E. & Czégény, Z., 2017. "Comparative study on the thermal behavior of untreated and various torrefied bark, stem wood, and stump of Norway spruce," Applied Energy, Elsevier, vol. 204(C), pages 1043-1054.
    18. Cataldo De Blasio & Gabriel Salierno & Andrea Magnano, 2021. "Implications on Feedstock Processing and Safety Issues for Semi-Batch Operations in Supercritical Water Gasification of Biomass," Energies, MDPI, vol. 14(10), pages 1-19, May.
    19. Andri Ottesen & Dieter Thom & Rupali Bhagat & Rola Mourdaa, 2023. "Learning from the Future of Kuwait: Scenarios as a Learning Tool to Build Consensus for Actions Needed to Realize Vision 2035," Sustainability, MDPI, vol. 15(9), pages 1-25, April.
    20. Pin-Han Chen & Cheng-Han Lee & Jun-Yi Wu & Wei-Sheng Chen, 2023. "Perspectives on Taiwan’s Pathway to Net-Zero Emissions," Sustainability, MDPI, vol. 15(6), pages 1-11, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:315:y:2025:i:c:s0360544225000660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.