IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v315y2025ics0360544225000246.html
   My bibliography  Save this article

Cement-based batteries for renewable and sustainable energy storage toward an energy-efficient future

Author

Listed:
  • Dong, Wenkui
  • Tang, Jianbo
  • Wang, Kejin
  • Huang, Yuhan
  • Shah, Surendra P.
  • Li, Wengui

Abstract

The cement-based battery introduced in this paper has potential to fundamentally change this paradigm by enabling the storage of electrical energy within concrete infrastructure. This innovation not only allows civil infrastructure to become self-sufficient, without relying on an external power supply, but also supports other power-dependent applications, such as street lighting, traffic signals, and electric vehicle charging. This review begins with a detailed introduction to the fundamental properties of battery and the design of concrete for infrastructure and battery applications. It is followed by a comprehensive discussion on potential civil infrastructures that integrate concrete batteries into structures, development of concrete electrodes, and advancements in cement-based electrolytes. The optimal configuration for the electrode geometry in a concrete battery involves seamless integration into concrete structures to minimize any negative effects on their appearance, functionalities, and load-bearing capabilities. Cement-based electrodes require conductive agents, which can be prepared by mixing, coating, or embedding conductive fillers in the non-conductive cement matrix. In contrast, metal-based electrodes exhibit excellent inherent electrical conductivity without additional conductive agents. Moreover, cement-based electrolytes typically incorporate inorganic/salt or organic/polymer additives to enhance ionic conductivity. The prospects are promising, particularly for the advancement of smart and sustainable cities aiming for 100 % energy self-sufficiency.

Suggested Citation

  • Dong, Wenkui & Tang, Jianbo & Wang, Kejin & Huang, Yuhan & Shah, Surendra P. & Li, Wengui, 2025. "Cement-based batteries for renewable and sustainable energy storage toward an energy-efficient future," Energy, Elsevier, vol. 315(C).
  • Handle: RePEc:eee:energy:v:315:y:2025:i:c:s0360544225000246
    DOI: 10.1016/j.energy.2025.134382
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225000246
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.134382?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Dian Wang & Yun Bao & Jianjun Shi, 2017. "Online Lithium-Ion Battery Internal Resistance Measurement Application in State-of-Charge Estimation Using the Extended Kalman Filter," Energies, MDPI, vol. 10(9), pages 1-11, August.
    2. Simone Barcellona & Lorenzo Codecasa & Silvia Colnago & Luigi Piegari, 2023. "Calendar Aging Effect on the Open Circuit Voltage of Lithium-Ion Battery," Energies, MDPI, vol. 16(13), pages 1-16, June.
    3. Yuki Yamada & Jianhui Wang & Seongjae Ko & Eriko Watanabe & Atsuo Yamada, 2019. "Advances and issues in developing salt-concentrated battery electrolytes," Nature Energy, Nature, vol. 4(4), pages 269-280, April.
    4. Bahadori, Alireza & Nwaoha, Chikezie, 2013. "A review on solar energy utilisation in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 1-5.
    5. F. Croce & G. B. Appetecchi & L. Persi & B. Scrosati, 1998. "Nanocomposite polymer electrolytes for lithium batteries," Nature, Nature, vol. 394(6692), pages 456-458, July.
    6. Kristen A. Severson & Peter M. Attia & Norman Jin & Nicholas Perkins & Benben Jiang & Zi Yang & Michael H. Chen & Muratahan Aykol & Patrick K. Herring & Dimitrios Fraggedakis & Martin Z. Bazant & Step, 2019. "Data-driven prediction of battery cycle life before capacity degradation," Nature Energy, Nature, vol. 4(5), pages 383-391, May.
    7. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2019. "Optimal operational planning of scalable DC microgrid with demand response, islanding, and battery degradation cost considerations," Applied Energy, Elsevier, vol. 237(C), pages 695-707.
    8. Paul Albertus & Susan Babinec & Scott Litzelman & Aron Newman, 2018. "Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries," Nature Energy, Nature, vol. 3(1), pages 16-21, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junyeob Moon & Dong Ok Kim & Lieven Bekaert & Munsoo Song & Jinkyu Chung & Danwon Lee & Annick Hubin & Jongwoo Lim, 2022. "Non-fluorinated non-solvating cosolvent enabling superior performance of lithium metal negative electrode battery," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Jiang, Lidang & Hu, Changyan & Ji, Sibei & Zhao, Hang & Chen, Junxiong & He, Ge, 2025. "Generating comprehensive lithium battery charging data with generative AI," Applied Energy, Elsevier, vol. 377(PC).
    3. Deng, Zhihua & Chan, Siew Hwa & Chen, Qihong & Liu, Hao & Zhang, Liyan & Zhou, Keliang & Tong, Sirui & Fu, Zhichao, 2023. "Efficient degradation prediction of PEMFCs using ELM-AE based on fuzzy extension broad learning system," Applied Energy, Elsevier, vol. 331(C).
    4. Wang, Fu-Kwun & Amogne, Zemenu Endalamaw & Chou, Jia-Hong & Tseng, Cheng, 2022. "Online remaining useful life prediction of lithium-ion batteries using bidirectional long short-term memory with attention mechanism," Energy, Elsevier, vol. 254(PB).
    5. Ibraheem, Rasheed & Dechent, Philipp & dos Reis, Gonçalo, 2025. "Path signature-based life prognostics of Li-ion battery using pulse test data," Applied Energy, Elsevier, vol. 378(PA).
    6. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    7. Yun Bao & Yuansheng Chen, 2021. "Lithium-Ion Battery Real-Time Diagnosis with Direct Current Impedance Spectroscopy," Energies, MDPI, vol. 14(15), pages 1-16, July.
    8. Das, Kaushik & Kumar, Roushan & Krishna, Anurup, 2024. "Analyzing electric vehicle battery health performance using supervised machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    9. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    10. Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.
    11. Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    12. Zhang, Jiusi & Jiang, Yuchen & Li, Xiang & Huo, Mingyi & Luo, Hao & Yin, Shen, 2022. "An adaptive remaining useful life prediction approach for single battery with unlabeled small sample data and parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    13. Wang, Yixiu & Zhu, Jiangong & Cao, Liang & Gopaluni, Bhushan & Cao, Yankai, 2023. "Long Short-Term Memory Network with Transfer Learning for Lithium-ion Battery Capacity Fade and Cycle Life Prediction," Applied Energy, Elsevier, vol. 350(C).
    14. S, Vignesh & Che, Hang Seng & Selvaraj, Jeyraj & Tey, Kok Soon & Lee, Jia Woon & Shareef, Hussain & Errouissi, Rachid, 2024. "State of Health (SoH) estimation methods for second life lithium-ion battery—Review and challenges," Applied Energy, Elsevier, vol. 369(C).
    15. Anderson, Cody B. & Picotti, Giovanni & Cholette, Michael E. & Leslie, Bruce & Steinberg, Theodore A. & Manzolini, Giampaolo, 2023. "Heliostat-field soiling predictions and cleaning resource optimization for solar tower plants," Applied Energy, Elsevier, vol. 352(C).
    16. Zia, Muhammad Fahad & Nasir, Mashood & Elbouchikhi, Elhoussin & Benbouzid, Mohamed & Vasquez, Juan C. & Guerrero, Josep M., 2022. "Energy management system for a hybrid PV-Wind-Tidal-Battery-based islanded DC microgrid: Modeling and experimental validation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    17. Zhao, Jingyuan & Wang, Zhenghong & Wu, Yuyan & Burke, Andrew F., 2025. "Predictive pretrained transformer (PPT) for real-time battery health diagnostics," Applied Energy, Elsevier, vol. 377(PD).
    18. Jin, Haiyan & Ru, Rui & Cai, Lei & Meng, Jinhao & Wang, Bin & Peng, Jichang & Yang, Shengxiang, 2025. "A synthetic data generation method and evolutionary transformer model for degradation trajectory prediction in lithium-ion batteries," Applied Energy, Elsevier, vol. 377(PD).
    19. Wan, Sicheng & Yang, Haojing & Lin, Jinwen & Li, Junhui & Wang, Yibo & Chen, Xinman, 2024. "Improved whale optimization algorithm towards precise state-of-charge estimation of lithium-ion batteries via optimizing LSTM," Energy, Elsevier, vol. 310(C).
    20. Huang, Zhelin & Xu, Fan & Yang, Fangfang, 2023. "State of health prediction of lithium-ion batteries based on autoregression with exogenous variables model," Energy, Elsevier, vol. 262(PB).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:315:y:2025:i:c:s0360544225000246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.