IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v314y2025ics0360544224040039.html
   My bibliography  Save this article

A novel eco-driving strategy for heterogeneous vehicle platooning with risk prediction and deep reinforcement learning

Author

Listed:
  • Sun, Xiaosong
  • Lu, Yongjie
  • Zheng, Lufeng
  • Li, Haoyu
  • Zhang, Xiaoting
  • Yang, Qi

Abstract

—Eco-driving control holds significant potential for energy savings in vehicle platooning. However, the development of energy-saving strategies is hampered by complex traffic scenarios and the heterogeneity of vehicles within the platoon. This study proposes a novel eco-driving approach that comprehensively accounts for the dynamic uncertainty of obstacles in avoidance scenarios and the heterogeneity between the lead vehicle and follow-up vehicles. First, the dynamic and powertrain models for the follow-up vehicles are constructed, and a rule-based risk prediction model is designed to predict the risk level during platoon obstacle avoidance. Besides, a deep reinforcement learning-based controller is developed to optimize longitudinal speed, balancing objectives such as driving efficiency, safety, and energy consumption, thereby reducing hydrogen consumption while ensuring driving safety and driving efficiency. The simulation results indicate that the proposed eco-driving approach eliminates the impact of heterogeneity within the platoon, achieving hydrogen consumption savings of 1.47 %–4.79 % under complex obstacle avoidance scenarios.

Suggested Citation

  • Sun, Xiaosong & Lu, Yongjie & Zheng, Lufeng & Li, Haoyu & Zhang, Xiaoting & Yang, Qi, 2025. "A novel eco-driving strategy for heterogeneous vehicle platooning with risk prediction and deep reinforcement learning," Energy, Elsevier, vol. 314(C).
  • Handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224040039
    DOI: 10.1016/j.energy.2024.134225
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224040039
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134225?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jie & Fotouhi, Abbas & Liu, Yonggang & Zhang, Yuanjian & Chen, Zheng, 2024. "Review on eco-driving control for connected and automated vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Li, Jie & Fotouhi, Abbas & Pan, Wenjun & Liu, Yonggang & Zhang, Yuanjian & Chen, Zheng, 2023. "Deep reinforcement learning-based eco-driving control for connected electric vehicles at signalized intersections considering traffic uncertainties," Energy, Elsevier, vol. 279(C).
    3. Hu, Xiaosong & Johannesson, Lars & Murgovski, Nikolce & Egardt, Bo, 2015. "Longevity-conscious dimensioning and power management of the hybrid energy storage system in a fuel cell hybrid electric bus," Applied Energy, Elsevier, vol. 137(C), pages 913-924.
    4. Kim, Youngki & Figueroa-Santos, Miriam & Prakash, Niket & Baek, Stanley & Siegel, Jason B. & Rizzo, Denise M., 2020. "Co-optimization of speed trajectory and power management for a fuel-cell/battery electric vehicle," Applied Energy, Elsevier, vol. 260(C).
    5. Xie, Shaobo & Lang, Kun & Qi, Shanwei, 2020. "Aerodynamic-aware coordinated control of following speed and power distribution for hybrid electric trucks," Energy, Elsevier, vol. 209(C).
    6. He, Hongwen & Meng, Xiangfei & Wang, Yong & Khajepour, Amir & An, Xiaowen & Wang, Renguang & Sun, Fengchun, 2024. "Deep reinforcement learning based energy management strategies for electrified vehicles: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    7. Liu, Hongjie & Yuan, Tengfei & Zeng, Xiaoqing & Guo, KaiYi & Wang, Yizeng & Mo, Yanghui & Xu, Hongzhe, 2024. "Eco-driving strategy for connected automated vehicles in mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    8. Qu, Xiaobo & Yu, Yang & Zhou, Mofan & Lin, Chin-Teng & Wang, Xiangyu, 2020. "Jointly dampening traffic oscillations and improving energy consumption with electric, connected and automated vehicles: A reinforcement learning based approach," Applied Energy, Elsevier, vol. 257(C).
    9. Huang, Yuhan & Ng, Elvin C.Y. & Zhou, John L. & Surawski, Nic C. & Chan, Edward F.C. & Hong, Guang, 2018. "Eco-driving technology for sustainable road transport: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 596-609.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jie & Fotouhi, Abbas & Liu, Yonggang & Zhang, Yuanjian & Chen, Zheng, 2024. "Review on eco-driving control for connected and automated vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Eckert, Jony Javorski & Silva, Fabrício L. & da Silva, Samuel Filgueira & Bueno, André Valente & de Oliveira, Mona Lisa Moura & Silva, Ludmila C.A., 2022. "Optimal design and power management control of hybrid biofuel–electric powertrain," Applied Energy, Elsevier, vol. 325(C).
    3. Zhang, Hanyu & Du, Lili, 2023. "Platoon-centered control for eco-driving at signalized intersection built upon hybrid MPC system, online learning and distributed optimization part I: Modeling and solution algorithm design," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 174-198.
    4. Amirgholy, Mahyar & Gao, H. Oliver, 2023. "Optimal traffic operation for maximum energy efficiency in signal-free urban networks: A macroscopic analytical approach," Applied Energy, Elsevier, vol. 329(C).
    5. Li, Yuan & Pan, Chaofeng & Wang, Jian & Li, Zhongxing & Liang, Jun & Cai, Chongyu, 2024. "Research on energy consumption optimization of predictive cruise control considering the state of the leading vehicle," Energy, Elsevier, vol. 308(C).
    6. Chen, Zheng & Wu, Simin & Shen, Shiquan & Liu, Yonggang & Guo, Fengxiang & Zhang, Yuanjian, 2023. "Co-optimization of velocity planning and energy management for autonomous plug-in hybrid electric vehicles in urban driving scenarios," Energy, Elsevier, vol. 263(PF).
    7. Zhang, Chuntao & Huang, Wenhui & Zhou, Xingyu & Lv, Chen & Sun, Chao, 2024. "Expert-demonstration-augmented reinforcement learning for lane-change-aware eco-driving traversing consecutive traffic lights," Energy, Elsevier, vol. 286(C).
    8. Hu, Dong & Huang, Chao & Wu, Jingda & Wei, Henglai & Pi, Dawei, 2025. "Enhancing data-driven energy management strategy via digital expert guidance for electrified vehicles," Applied Energy, Elsevier, vol. 381(C).
    9. Wang, Yong & Wu, Yuankai & Tang, Yingjuan & Li, Qin & He, Hongwen, 2023. "Cooperative energy management and eco-driving of plug-in hybrid electric vehicle via multi-agent reinforcement learning," Applied Energy, Elsevier, vol. 332(C).
    10. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    11. Pregelj, Boštjan & Micor, Michał & Dolanc, Gregor & Petrovčič, Janko & Jovan, Vladimir, 2016. "Impact of fuel cell and battery size to overall system performance – A diesel fuel-cell APU case study," Applied Energy, Elsevier, vol. 182(C), pages 365-375.
    12. Santos, Alberto & Maia, Pedro & Jacob, Rodrigo & Wei, Huang & Callegari, Camila & Oliveira Fiorini, Ana Carolina & Schaeffer, Roberto & Szklo, Alexandre, 2024. "Road conditions and driving patterns on fuel usage: Lessons from an emerging economy," Energy, Elsevier, vol. 295(C).
    13. Farouk Odeim & Jürgen Roes & Angelika Heinzel, 2015. "Power Management Optimization of an Experimental Fuel Cell/Battery/Supercapacitor Hybrid System," Energies, MDPI, vol. 8(7), pages 1-26, June.
    14. Najafi, Arsalan & Falaghi, Hamid & Contreras, Javier & Ramezani, Maryam, 2016. "Medium-term energy hub management subject to electricity price and wind uncertainty," Applied Energy, Elsevier, vol. 168(C), pages 418-433.
    15. Jiajun Liu & Tianxu Jin & Li Liu & Yajue Chen & Kun Yuan, 2017. "Multi-Objective Optimization of a Hybrid ESS Based on Optimal Energy Management Strategy for LHDs," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    16. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine," Applied Energy, Elsevier, vol. 254(C).
    17. Yang Wang & Alessandra Boggio-Marzet, 2018. "Evaluation of Eco-Driving Training for Fuel Efficiency and Emissions Reduction According to Road Type," Sustainability, MDPI, vol. 10(11), pages 1-16, October.
    18. Daniel Egan & Qilun Zhu & Robert Prucka, 2023. "A Review of Reinforcement Learning-Based Powertrain Controllers: Effects of Agent Selection for Mixed-Continuity Control and Reward Formulation," Energies, MDPI, vol. 16(8), pages 1-31, April.
    19. Robaina, Margarita & Neves, Ana, 2021. "Complete decomposition analysis of CO2 emissions intensity in the transport sector in Europe," Research in Transportation Economics, Elsevier, vol. 90(C).
    20. Jiang, Hongliang & Xu, Liangfei & Li, Jianqiu & Hu, Zunyan & Ouyang, Minggao, 2019. "Energy management and component sizing for a fuel cell/battery/supercapacitor hybrid powertrain based on two-dimensional optimization algorithms," Energy, Elsevier, vol. 177(C), pages 386-396.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224040039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.