IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v314y2025ics0360544224039641.html
   My bibliography  Save this article

Development and design optimization of a single-acting electro-pneumatic variable valve actuator for a camless engine using experiments, mathematical theory and genetic algorithm

Author

Listed:
  • Satalagaon, Ajay Kumar
  • Guha, Abhijit
  • Srivastava, Dhananjay Kumar

Abstract

The paper describes the development of a novel, single-acting electro-pneumatic variable valve actuation (EPVVA) system for a camless internal combustion engine, and the optimization of its design variables and control parameters. Unlike the conventional cam-based system in which the valve events are tied up with the rotation of the crankshaft, the EPVVA can achieve an arbitrary specification of the motion of the engine valve as a function of time with a relatively simple control strategy. A mathematical theory for single-acting EPVVA system is formulated here, which captures the thermo-fluid-dynamics as well as the applied mechanics of the actuator cylinder and the engine valve. An experimental facility is developed to measure the valve motion in a single-acting EPVVA system. The theory matches well with the experiments. An example-application of binary-coded genetic algorithm produces the optimum design of an EPVVA system to be retrofitted to an SI engine which was originally cam-based. As compared to the cam-based actuation, the EPVVA system is shown to enhance the volumetric efficiency (by up to 63 %) while consuming similar level of power for actuation (0.012–0.117 kW at 1000–4000 rpm) (the EPVVA system will, however, considerably reduce the pumping loss in the engine thermodynamic cycle).

Suggested Citation

  • Satalagaon, Ajay Kumar & Guha, Abhijit & Srivastava, Dhananjay Kumar, 2025. "Development and design optimization of a single-acting electro-pneumatic variable valve actuator for a camless engine using experiments, mathematical theory and genetic algorithm," Energy, Elsevier, vol. 314(C).
  • Handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224039641
    DOI: 10.1016/j.energy.2024.134186
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224039641
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.134186?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Tripathy, Srinibas & Das, Abhimanyu & Sahu, Balram & Srivastava, Dhananjay Kumar, 2020. "Electro-pneumatic variable valve actuation system for camless engine: Part I-development and characterization," Energy, Elsevier, vol. 193(C).
    2. Li, Yangtao & Khajepour, Amir & Devaud, Cécile, 2018. "Realization of variable Otto-Atkinson cycle using variable timing hydraulic actuated valve train for performance and efficiency improvements in unthrottled gasoline engines," Applied Energy, Elsevier, vol. 222(C), pages 199-215.
    3. Qu, Shaoyang & Fassbender, David & Vacca, Andrea & Busquets, Enrique, 2021. "A high-efficient solution for electro-hydraulic actuators with energy regeneration capability," Energy, Elsevier, vol. 216(C).
    4. Tripathy, Srinibas & Das, Abhimanyu & Srivastava, Dhananjay Kumar, 2020. "Electro-pneumatic variable valve actuation system for camless engine: Part II-fuel consumption improvement through un-throttled operation," Energy, Elsevier, vol. 193(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia, Dongdong & Qiao, Junhao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Wang, Rumin & Duan, Xiongbo, 2025. "The effect of variable enhanced Miller cycle combined with EGR strategy on the cycle-by-cycle variations and performance of high compression ratio engines based on asynchronous valve opening strategy," Energy, Elsevier, vol. 320(C).
    2. Mu, Hongyun & Cheng, Min & Tang, Xiongfeng & Ding, Ruqi & Ma, Wensheng, 2025. "A hybrid distributed-centralized load sensing system for efficiency improvement of electrified construction machinery," Energy, Elsevier, vol. 314(C).
    3. Li, Su & Zhang, Zhizhong & Du, Heng & Zheng, Guoqiang & Zhang, Xiaolong & Li, Zerong, 2024. "Design and verification of a novel energy-efficient pump-valve primary-auxiliary electro-hydraulic steering system for multi-axle heavy vehicles," Energy, Elsevier, vol. 312(C).
    4. Kim, Donghwan & Son, Yousang & Park, Sungwook, 2022. "Effects of operating parameters on in-cylinder flow characteristics of an optically accessible engine with a spray-guided injector," Energy, Elsevier, vol. 245(C).
    5. Fridrichová, K. & Drápal, L. & Vopařil, J. & Dlugoš, J., 2021. "Overview of the potential and limitations of cylinder deactivation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    6. Wang, Feng & Wu, Jiaming & Lin, Zichang & Zhang, Haoxiang & Xu, Bing, 2023. "A power-sharing electro-hydraulic actuator system to downsize electric motors for electric mobile machines," Energy, Elsevier, vol. 284(C).
    7. Konrad Johan Jensen & Morten Kjeld Ebbesen & Michael Rygaard Hansen, 2021. "Novel Concept for Electro-Hydrostatic Actuators for Motion Control of Hydraulic Manipulators," Energies, MDPI, vol. 14(20), pages 1-27, October.
    8. Liu, Qi & Guo, Tao & Fu, Jianqin & Dai, Hongliang & Liu, Jingping, 2022. "Experimental study on the effects of injection parameters and exhaust gas recirculation on combustion, emission and performance of Atkinson cycle gasoline direct-injection engine," Energy, Elsevier, vol. 238(PB).
    9. Lasse Schmidt & Kenneth Vorbøl Hansen, 2022. "Electro-Hydraulic Variable-Speed Drive Networks—Idea, Perspectives, and Energy Saving Potentials," Energies, MDPI, vol. 15(3), pages 1-33, February.
    10. Mahabadipour, Hamidreza & Srinivasan, Kalyan K. & Krishnan, Sundar R., 2019. "An exergy analysis methodology for internal combustion engines using a multi-zone simulation of dual fuel low temperature combustion," Applied Energy, Elsevier, vol. 256(C).
    11. Zhao, Jinxing & Fu, Rui & Wang, Sen & Xu, Hongchang & Yuan, Zhiyuan, 2022. "Fuel economy improvement of a turbocharged gasoline SI engine through combining cooled EGR and high compression ratio," Energy, Elsevier, vol. 239(PE).
    12. Qian, Yejian & Gong, Zhen & Zhuang, Yuan & Wang, Chunmei & Zhao, Peng, 2018. "Mechanism study of scavenging process and its effect on combustion characteristics in a boosted GDI engine," Energy, Elsevier, vol. 165(PA), pages 246-266.
    13. Andrzej Milecki & Jarosław Ortmann, 2021. "Influences of Control Parameters on Reduction of Energy Losses in Electrohydraulic Valve with Stepping Motors," Energies, MDPI, vol. 14(19), pages 1-14, September.
    14. Søren Ketelsen & Sebastian Michel & Torben O. Andersen & Morten Kjeld Ebbesen & Jürgen Weber & Lasse Schmidt, 2021. "Thermo-Hydraulic Modelling and Experimental Validation of an Electro-Hydraulic Compact Drive," Energies, MDPI, vol. 14(9), pages 1-29, April.
    15. Lasse Schmidt & Mikkel van Binsbergen-Galán, 2024. "Electro-Hydraulic Variable-Speed Drive Network Technology—First Experimental Validation," Energies, MDPI, vol. 17(13), pages 1-15, June.
    16. Mingkun Yang & Xianhang Liu & Guishan Yan & Chao Ai & Cong Yu, 2024. "Research on Variable Speed Variable Displacement Power Unit with High Efficiency and High Dynamic Optimized Matching," Energies, MDPI, vol. 17(13), pages 1-22, July.
    17. Mingkun Yang & Gexin Chen & Jianxin Lu & Cong Yu & Guishan Yan & Chao Ai & Yanwen Li, 2021. "Research on Energy Transmission Mechanism of the Electro-Hydraulic Servo Pump Control System," Energies, MDPI, vol. 14(16), pages 1-17, August.
    18. Lin, Zichang & Lin, Zhenchuan & Wang, Feng & Xu, Bing, 2024. "A series electric hybrid wheel loader powertrain with independent electric load-sensing system," Energy, Elsevier, vol. 286(C).
    19. Longxin Jiang & Liang Liu & Xiaowei Peng & Zhaoping Xu, 2020. "Design and Analysis of a Fully Variable Valve Actuation System," Energies, MDPI, vol. 13(23), pages 1-16, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:314:y:2025:i:c:s0360544224039641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.