IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i13p3192-d1425002.html
   My bibliography  Save this article

Electro-Hydraulic Variable-Speed Drive Network Technology—First Experimental Validation

Author

Listed:
  • Lasse Schmidt

    (AAU Energy, Aalborg University, Pontoppidanstraede 111, 9220 Aalborg, Denmark)

  • Mikkel van Binsbergen-Galán

    (AAU Energy, Aalborg University, Pontoppidanstraede 111, 9220 Aalborg, Denmark)

Abstract

The improvement of the energy efficiency of hydraulic systems remains an essential challenge for industry, and the demand for more sustainable solutions is increasing. A main focus in this endeavor is the ability to eliminate or strongly reduce the use of throttle control valves which have been the preferred control element in industrial hydraulic systems for decades. Components have been subject to continuous evolution, and current industrial grade hydraulic pumps and motors are both efficient and reliable. Even though few percentages of energy efficiency can still be achieved, the main achievements in terms of efficiency are associated with novel system designs rather than further development of components. An area subject to increasing attention is the field of variable-speed displacement control, allowing to avoid the main control valve throttle losses. Systems using this technology are, however, mainly developed as standalone drive systems, necessitating maximum force, speed, and power installed in each axis, with limited hydraulic power distribution capability compared to valve-controlled systems. An emerging field addressing this challenge is that of so-called electro-hydraulic variable-speed drive networks, which allow to completely eliminate the use of control valves and enable power sharing both electrically and hydraulically, potentially reducing the necessary installed power in many cases. The idea of such a technology was first proposed in 2022, and so far developments reported in the literature have mainly been of a theoretical nature. This article presents the first ever experimental results for a dual-cylinder electro-hydraulic variable-speed drive network prototype. The prototype was developed for an industrial application, but has initially been implemented in a laboratory testbench. Extensive data acquisition has been conducted while subject to the associated industrial motion cycle, under different load conditions. The data obtained are further used in combination with models to predict the total efficiency of the drive network prototype under higher loads than what could be achieved in the laboratory, suggesting a total efficiency from the electric supply to the cylinder pistons of 68%. Re-configuring the prototype to a known standalone drive system structure implies comparable efficiencies. Finally, the drive network is theoretically compared to a valve drive solution, generally suggesting that the prototype drive network can provide efficiency improvements of at least 40% in comparison.

Suggested Citation

  • Lasse Schmidt & Mikkel van Binsbergen-Galán, 2024. "Electro-Hydraulic Variable-Speed Drive Network Technology—First Experimental Validation," Energies, MDPI, vol. 17(13), pages 1-15, June.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3192-:d:1425002
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/13/3192/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/13/3192/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qu, Shaoyang & Fassbender, David & Vacca, Andrea & Busquets, Enrique, 2021. "A high-efficient solution for electro-hydraulic actuators with energy regeneration capability," Energy, Elsevier, vol. 216(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Feng & Wu, Jiaming & Lin, Zichang & Zhang, Haoxiang & Xu, Bing, 2023. "A power-sharing electro-hydraulic actuator system to downsize electric motors for electric mobile machines," Energy, Elsevier, vol. 284(C).
    2. Konrad Johan Jensen & Morten Kjeld Ebbesen & Michael Rygaard Hansen, 2021. "Novel Concept for Electro-Hydrostatic Actuators for Motion Control of Hydraulic Manipulators," Energies, MDPI, vol. 14(20), pages 1-27, October.
    3. Lasse Schmidt & Kenneth Vorbøl Hansen, 2022. "Electro-Hydraulic Variable-Speed Drive Networks—Idea, Perspectives, and Energy Saving Potentials," Energies, MDPI, vol. 15(3), pages 1-33, February.
    4. Mu, Hongyun & Cheng, Min & Tang, Xiongfeng & Ding, Ruqi & Ma, Wensheng, 2025. "A hybrid distributed-centralized load sensing system for efficiency improvement of electrified construction machinery," Energy, Elsevier, vol. 314(C).
    5. Andrzej Milecki & Jarosław Ortmann, 2021. "Influences of Control Parameters on Reduction of Energy Losses in Electrohydraulic Valve with Stepping Motors," Energies, MDPI, vol. 14(19), pages 1-14, September.
    6. Li, Su & Zhang, Zhizhong & Du, Heng & Zheng, Guoqiang & Zhang, Xiaolong & Li, Zerong, 2024. "Design and verification of a novel energy-efficient pump-valve primary-auxiliary electro-hydraulic steering system for multi-axle heavy vehicles," Energy, Elsevier, vol. 312(C).
    7. Søren Ketelsen & Sebastian Michel & Torben O. Andersen & Morten Kjeld Ebbesen & Jürgen Weber & Lasse Schmidt, 2021. "Thermo-Hydraulic Modelling and Experimental Validation of an Electro-Hydraulic Compact Drive," Energies, MDPI, vol. 14(9), pages 1-29, April.
    8. Satalagaon, Ajay Kumar & Guha, Abhijit & Srivastava, Dhananjay Kumar, 2025. "Development and design optimization of a single-acting electro-pneumatic variable valve actuator for a camless engine using experiments, mathematical theory and genetic algorithm," Energy, Elsevier, vol. 314(C).
    9. Mingkun Yang & Xianhang Liu & Guishan Yan & Chao Ai & Cong Yu, 2024. "Research on Variable Speed Variable Displacement Power Unit with High Efficiency and High Dynamic Optimized Matching," Energies, MDPI, vol. 17(13), pages 1-22, July.
    10. Mingkun Yang & Gexin Chen & Jianxin Lu & Cong Yu & Guishan Yan & Chao Ai & Yanwen Li, 2021. "Research on Energy Transmission Mechanism of the Electro-Hydraulic Servo Pump Control System," Energies, MDPI, vol. 14(16), pages 1-17, August.
    11. Lin, Zichang & Lin, Zhenchuan & Wang, Feng & Xu, Bing, 2024. "A series electric hybrid wheel loader powertrain with independent electric load-sensing system," Energy, Elsevier, vol. 286(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3192-:d:1425002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.