IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224037721.html
   My bibliography  Save this article

Carbon sequestration with enhanced gas recovery (CSEGR) for a novel natural gas value chain: Synergy with cold energy utilization

Author

Listed:
  • Kim, Dohee
  • Park, Sihwan
  • Lee, Inkyu
  • Park, Jinwoo

Abstract

Liquefied natural gas (LNG) plays a primary role in long-distance transportation; however, its production is energy-intensive, and CO2 emissions from its use are unavoidable. To address these challenges, a liquid CO2-mixed refrigerant (LCO2MR) process is proposed, utilizing CO2 in two distinct ways: (i) recovering cold energy from LNG regasification for use in the natural gas liquefaction process and (ii) injecting CO2 into gas fields for enhanced gas recovery (EGR), boosting natural gas production. This study comprehensively analyzes the proposed process, focusing on thermodynamic, economic, and environmental impacts. The energy consumptions for the propane precooled mixed refrigerant (C3MR) and LCO2MR processes are 970 and 815 kJ/kg of LNG, respectively. The LCO2MR process has an annual expense 18.94 % lower than C3MR process when considering carbon tax, due to its simpler structure and lower energy requirements. Environmentally, the LCO2MR process reduces CO2 emissions by 53.33 % across the value chain compared to the C3MR process. Additionally, using CO2 for EGR is projected to increase natural gas production by 81.67 tons/h. These results indicate that utilizing CO2 as a cold energy carrier and for increasing natural gas production is energetically and economically advantageous, significantly reducing CO2 emissions and contributing to a cleaner LNG value chain.

Suggested Citation

  • Kim, Dohee & Park, Sihwan & Lee, Inkyu & Park, Jinwoo, 2024. "Carbon sequestration with enhanced gas recovery (CSEGR) for a novel natural gas value chain: Synergy with cold energy utilization," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224037721
    DOI: 10.1016/j.energy.2024.133994
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224037721
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133994?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Tianbiao & Chong, Zheng Rong & Zheng, Junjie & Ju, Yonglin & Linga, Praveen, 2019. "LNG cold energy utilization: Prospects and challenges," Energy, Elsevier, vol. 170(C), pages 557-568.
    2. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. He, Tianbiao & Mao, Ning & Liu, Zuming & Qyyum, Muhammad Abdul & Lee, Moonyong & Pravez, Ashak Mahmud, 2020. "Impact of mixed refrigerant selection on energy and exergy performance of natural gas liquefaction processes," Energy, Elsevier, vol. 199(C).
    4. Yun, Seokwon & Oh, Se-Young & Kim, Jin-Kuk, 2020. "Techno-economic assessment of absorption-based CO2 capture process based on novel solvent for coal-fired power plant," Applied Energy, Elsevier, vol. 268(C).
    5. Domingues, António & Matos, Henrique A. & Pereira, Pedro M., 2022. "Novel integrated system of LNG regasification / electricity generation based on a cascaded two-stage Rankine cycle, with ternary mixtures as working fluids and seawater as hot utility," Energy, Elsevier, vol. 238(PC).
    6. Oh, Se-Young & Binns, Michael & Cho, Habin & Kim, Jin-Kuk, 2016. "Energy minimization of MEA-based CO2 capture process," Applied Energy, Elsevier, vol. 169(C), pages 353-362.
    7. Santos, Lucas F. & Costa, Caliane B.B. & Caballero, José A. & Ravagnani, Mauro A.S.S., 2023. "Multi-objective simulation–optimization via kriging surrogate models applied to natural gas liquefaction process design," Energy, Elsevier, vol. 262(PB).
    8. He, Ting & Si, Bin & Gundersen, Truls & Chen, Liqiong & Lin, Wensheng, 2024. "Integrated ethane recovery and cryogenic carbon capture in a dual mixed refrigerant natural gas liquefaction process," Energy, Elsevier, vol. 290(C).
    9. Kim, Juwon & Seo, Youngkyun & Chang, Daejun, 2016. "Economic evaluation of a new small-scale LNG supply chain using liquid nitrogen for natural-gas liquefaction," Applied Energy, Elsevier, vol. 182(C), pages 154-163.
    10. He, Tianbiao & Zhou, Zhongming & Mao, Ning & Qyyum, Muhammad Abdul, 2024. "Transcritical CO2 precooled single mixed refrigerant natural gas liquefaction process: Exergy and Exergoeconomic optimization," Energy, Elsevier, vol. 294(C).
    11. Zhang, Shouxin & Zou, Zimo & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Shahzad, Khurram & Ali, Arshid Mahmood & Wang, Bo-Hong, 2023. "A new strategy for mixed refrigerant composition optimisation in the propane precooled mixed refrigerant natural gas liquefaction process," Energy, Elsevier, vol. 274(C).
    12. Geng, Jinliang & Sun, Heng, 2023. "Optimization and analysis of a hydrogen liquefaction process: Energy, exergy, economic, and uncertainty quantification analysis," Energy, Elsevier, vol. 262(PA).
    13. Osat, Mohammad & Shojaati, Faryar & Osat, Mojtaba, 2023. "Techno-economic assessment of butanol and pentanol productions from sorption enhanced chemical looping gasification of a lignocellulosic biomass," Renewable Energy, Elsevier, vol. 217(C).
    14. Wen, Du & Aziz, Muhammad, 2022. "Techno-economic analyses of power-to-ammonia-to-power and biomass-to-ammonia-to-power pathways for carbon neutrality scenario," Applied Energy, Elsevier, vol. 319(C).
    15. Gao, Xinyuan & Yang, Shenglai & Tian, Lerao & Shen, Bin & Bi, Lufei & Zhang, Yiqi & Wang, Mengyu & Rui, Zhenhua, 2024. "System and multi-physics coupling model of liquid-CO2 injection on CO2 storage with enhanced gas recovery (CSEGR) framework," Energy, Elsevier, vol. 294(C).
    16. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Cold utilization systems of LNG: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1171-1188.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bahram Ghorbani & Sohrab Zendehboudi & Noori M. Cata Saady, 2025. "Advancing Hybrid Cryogenic Natural Gas Systems: A Comprehensive Review of Processes and Performance Optimization," Energies, MDPI, vol. 18(6), pages 1-87, March.
    2. Zhang, Chengbin & Li, Deming & Mao, Changjun & Liu, Haiyang & Chen, Yongping, 2024. "Thermodynamic analysis of liquid air energy storage system integrating LNG cold energy," Energy, Elsevier, vol. 299(C).
    3. He, Tianbiao & Zhang, Jibao & Mao, Ning & Linga, Praveen, 2021. "Organic Rankine cycle integrated with hydrate-based desalination for a sustainable energy–water nexus system," Applied Energy, Elsevier, vol. 291(C).
    4. Mun, Haneul & Kim, Dohee & Park, Jinwoo & Lee, Inkyu, 2024. "Advanced dual mixed refrigerant (DMR) natural gas liquefaction plant with liquid air: Focus on configuration and optimization," Energy, Elsevier, vol. 313(C).
    5. Sun, Daming & Wang, Chenghong & Shen, Qie, 2024. "A compression-free re-liquefication process of LNG boil-off gas using LNG cold energy," Energy, Elsevier, vol. 294(C).
    6. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    7. Zhu, Yu & Li, Jiamei & Ge, Minghui & Gu, Hai & Wang, Shixue, 2023. "Numerical and experimental study of a non-frosting thermoelectric generation device for low temperature waste heat recovery," Applied Energy, Elsevier, vol. 352(C).
    8. Qi, Meng & Park, Jinwoo & Kim, Jeongdong & Lee, Inkyu & Moon, Il, 2020. "Advanced integration of LNG regasification power plant with liquid air energy storage: Enhancements in flexibility, safety, and power generation," Applied Energy, Elsevier, vol. 269(C).
    9. Atienza-Márquez, Antonio & Bruno, Joan Carles & Akisawa, Atsushi & Coronas, Alberto, 2019. "Performance analysis of a combined cold and power (CCP) system with exergy recovery from LNG-regasification," Energy, Elsevier, vol. 183(C), pages 448-461.
    10. Davide Borelli & Francesco Devia & Corrado Schenone & Federico Silenzi & Luca A. Tagliafico, 2021. "Dynamic Modelling of LNG Powered Combined Energy Systems in Port Areas," Energies, MDPI, vol. 14(12), pages 1-18, June.
    11. Han, Donggu & Tak, Kyungjae & Park, Jaedeuk & Lee, Ki Bong & Moon, Jong-Ho & Lee, Ung, 2023. "Impact of liquefaction ratio and cold energy recovery on liquefied natural gas production," Applied Energy, Elsevier, vol. 352(C).
    12. Yang, Lizhong & Villalobos, Uver & Akhmetov, Bakytzhan & Gil, Antoni & Khor, Jun Onn & Palacios, Anabel & Li, Yongliang & Ding, Yulong & Cabeza, Luisa F. & Tan, Wooi Leong & Romagnoli, Alessandro, 2021. "A comprehensive review on sub-zero temperature cold thermal energy storage materials, technologies, and applications: State of the art and recent developments," Applied Energy, Elsevier, vol. 288(C).
    13. Ge, Minghui & Li, Zhenhua & Wang, Yeting & Zhao, Yulong & Zhu, Yu & Wang, Shixue & Liu, Liansheng, 2021. "Experimental study on thermoelectric power generation based on cryogenic liquid cold energy," Energy, Elsevier, vol. 220(C).
    14. Daniarta, Sindu & Błasiak, Przemysław & Kolasiński, Piotr & Imre, Attila R., 2024. "Sustainability by means of cold energy utilisation-to-power conversion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 205(C).
    15. Khaliq Majeed & Muhammad Abdul Qyyum & Alam Nawaz & Ashfaq Ahmad & Muhammad Naqvi & Tianbiao He & Moonyong Lee, 2020. "Shuffled Complex Evolution-Based Performance Enhancement and Analysis of Cascade Liquefaction Process for Large-Scale LNG Production," Energies, MDPI, vol. 13(10), pages 1-20, May.
    16. He, Tianbiao & Ma, Jie & Mao, Ning & Qi, Meng & Jin, Tao, 2024. "Exploring the stability and dynamic responses of dual-stage series ORC using LNG cold energy for sustainable power generation," Applied Energy, Elsevier, vol. 372(C).
    17. Ebrahimi, Armin & Ghorbani, Bahram & Ziabasharhagh, Masoud, 2020. "Introducing a novel integrated cogeneration system of power and cooling using stored liquefied natural gas as a cryogenic energy storage system," Energy, Elsevier, vol. 206(C).
    18. He, Tianbiao & Lv, Hongyu & Shao, Zixian & Zhang, Jibao & Xing, Xialian & Ma, Huigang, 2020. "Cascade utilization of LNG cold energy by integrating cryogenic energy storage, organic Rankine cycle and direct cooling," Applied Energy, Elsevier, vol. 277(C).
    19. Ning, Jinghong & Sun, Zhili & Dong, Qiang & Liu, Xinghua, 2019. "Performance study of supplying cooling load and output power combined cycle using the cold energy of the small scale LNG," Energy, Elsevier, vol. 172(C), pages 36-44.
    20. Daniarta, S. & Sowa, D. & Błasiak, P. & Imre, A.R. & Kolasiński, P., 2024. "Techno-economic survey of enhancing Power-to-Methane efficiency via waste heat recovery from electrolysis and biomethanation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 194(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224037721. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.