IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics036054422403648x.html
   My bibliography  Save this article

Comprehensive approach to static firing tests of micro gas turbine engines powered by liquid fuels

Author

Listed:
  • Antonov, D.V.
  • Cherkasov, R.E.
  • Gneusheva, V.V.
  • Mikulich, M.E.
  • Strizhak, P.A.
  • Yanovskiy, L.S.

Abstract

The paper presents test results on the combustion of liquid fuels in micro gas turbine engines (MGTE). A setup was designed and built to determine the following MGTE characteristics: thrust, inlet static pressure, compressor static pressure, compressor total pressure, combustor total pressure, turbine total pressure, turbine speed, and the air temperature at the inlet, inside the compressor, at the turbine outlet, and at the nozzle exit. Thermodynamic cycle analysis of MGTEs was performed in the operation mode providing the required thrust. Noise and vibration levels of the MGTE operation were measured using a noise and vibration analyzer. Concentrations of anthropogenic emissions (CO, CO2, NO, NO2, N2O, SO2, CH4, C3H8) were recorded using a set of sensors. The tests revealed consistent patterns in the variation of throttle characteristics, gas composition, noise, and vibration in different engine operation modes. The test results were processed to produce plots of the key MGTE characteristics. Recommendations were developed for testing new types of fuels in MGTEs.

Suggested Citation

  • Antonov, D.V. & Cherkasov, R.E. & Gneusheva, V.V. & Mikulich, M.E. & Strizhak, P.A. & Yanovskiy, L.S., 2024. "Comprehensive approach to static firing tests of micro gas turbine engines powered by liquid fuels," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s036054422403648x
    DOI: 10.1016/j.energy.2024.133870
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422403648X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133870?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oni, Babalola Aisosa & Sanni, Samuel Eshorame & Ibegbu, Anayo Jerome & Tomomewo, Olusegun Stanley, 2023. "Evaluation of engine characteristics of a micro-gas turbine powered with JETA1 fuel mixed with Afzelia biodiesel and dimethyl ether (DME)," Renewable Energy, Elsevier, vol. 216(C).
    2. Li, Hui & Zou, Zhengping & Chen, Yiming & Du, Pengcheng & Fu, Chao & Wang, Yifan, 2023. "Experimental insights into thermal performance of a microtube precooler with drastic coolant properties variation and precooling impacts on turbojet engine operation," Energy, Elsevier, vol. 278(PA).
    3. Suchocki, T. & Witanowski, Ł. & Lampart, P. & Kazimierski, P. & Januszewicz, K. & Gawron, B., 2021. "Experimental investigation of performance and emission characteristics of a miniature gas turbine supplied by blends of kerosene and waste tyre pyrolysis oil," Energy, Elsevier, vol. 215(PA).
    4. Nakatake, Yasuhito & Yamashita, Hirofumi & Tanaka, Hiroshi & Goto, Hidechika & Suzuki, Takashi, 2020. "Reduction of fuel consumption of a small-scale gas turbine engine with fine bubble fuel," Energy, Elsevier, vol. 194(C).
    5. Roberto Capata & Matteo Saracchini, 2018. "Experimental Campaign Tests on Ultra Micro Gas Turbines, Fuel Supply Comparison and Optimization," Energies, MDPI, vol. 11(4), pages 1-17, March.
    6. Habib, Zehra & Parthasarathy, Ramkumar & Gollahalli, Subramanyam, 2010. "Performance and emission characteristics of biofuel in a small-scale gas turbine engine," Applied Energy, Elsevier, vol. 87(5), pages 1701-1709, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gunerhan, Ali & Altuntas, Onder & Caliskan, Hakan, 2024. "Analyzing the influence of feedstock selection in pyrolysis on aviation gas turbine engines: A study on performance, combustion efficiency, and emission profiles," Energy, Elsevier, vol. 306(C).
    2. Wenjiao Qi & Qinghua Deng & Yu Jiang & Qi Yuan & Zhenping Feng, 2018. "Disc Thickness and Spacing Distance Impacts on Flow Characteristics of Multichannel Tesla Turbines," Energies, MDPI, vol. 12(1), pages 1-25, December.
    3. Kurji, H. & Valera-Medina, A. & Runyon, J. & Giles, A. & Pugh, D. & Marsh, R. & Cerone, N. & Zimbardi, F. & Valerio, V., 2016. "Combustion characteristics of biodiesel saturated with pyrolysis oil for power generation in gas turbines," Renewable Energy, Elsevier, vol. 99(C), pages 443-451.
    4. Deng, Li & Chen, Min & Tang, Hailong & Zhang, Jiyuan, 2024. "Performance evaluation of multicombustor engine for Mach3+-Level propulsion system," Energy, Elsevier, vol. 295(C).
    5. Rochelle, David & Najafi, Hamidreza, 2019. "A review of the effect of biodiesel on gas turbine emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 129-137.
    6. Chen, Longfei & Zhang, Zhichao & Lu, Yiji & Zhang, Chi & Zhang, Xin & Zhang, Cuiqi & Roskilly, Anthony Paul, 2017. "Experimental study of the gaseous and particulate matter emissions from a gas turbine combustor burning butyl butyrate and ethanol blends," Applied Energy, Elsevier, vol. 195(C), pages 693-701.
    7. Roberto Capata, 2018. "Urban and Extra-Urban Hybrid Vehicles: A Technological Review," Energies, MDPI, vol. 11(11), pages 1-38, October.
    8. Sallevelt, J.L.H.P. & Gudde, J.E.P. & Pozarlik, A.K. & Brem, G., 2014. "The impact of spray quality on the combustion of a viscous biofuel in a micro gas turbine," Applied Energy, Elsevier, vol. 132(C), pages 575-585.
    9. El-Zoheiry, Radwan M. & EL-Seesy, Ahmed I. & Attia, Ali M.A. & He, Zhixia & El-Batsh, Hesham M., 2020. "Combustion and emission characteristics of Jojoba biodiesel-jet A1 mixtures applying a lean premixed pre-vaporized combustion techniques: An experimental investigation," Renewable Energy, Elsevier, vol. 162(C), pages 2227-2245.
    10. Heyu Wang & Kai Hong Luo, 2023. "Aerothermal Performance and Soot Emissions of Reacting Flow in a Micro-Gas Turbine Combustor," Energies, MDPI, vol. 16(7), pages 1-19, March.
    11. Seljak, Tine & Rodman Oprešnik, Samuel & Kunaver, Matjaž & Katrašnik, Tomaž, 2012. "Wood, liquefied in polyhydroxy alcohols as a fuel for gas turbines," Applied Energy, Elsevier, vol. 99(C), pages 40-49.
    12. Mendez, C.J. & Parthasarathy, R.N. & Gollahalli, S.R., 2014. "Performance and emission characteristics of butanol/Jet A blends in a gas turbine engine," Applied Energy, Elsevier, vol. 118(C), pages 135-140.
    13. Li, Hanxiu & Zhao, Liang, 2023. "Life cycle assessment and multi-objective optimization for industrial utility systems," Energy, Elsevier, vol. 280(C).
    14. Tomasz Suchocki & Paweł Kazimierski & Katarzyna Januszewicz & Piotr Lampart & Bartosz Gawron & Tomasz Białecki, 2024. "Exploring Performance of Pyrolysis-Derived Plastic Oils in Gas Turbine Engines," Energies, MDPI, vol. 17(16), pages 1-12, August.
    15. Suchocki, T. & Witanowski, Ł. & Lampart, P. & Kazimierski, P. & Januszewicz, K. & Gawron, B., 2021. "Experimental investigation of performance and emission characteristics of a miniature gas turbine supplied by blends of kerosene and waste tyre pyrolysis oil," Energy, Elsevier, vol. 215(PA).
    16. Abubaker, Ahmad M. & Darwish Ahmad, Adnan & Salaimeh, Ahmad A. & Akafuah, Nelson K. & Saito, Kozo, 2022. "A novel solar combined cycle integration: An exergy-based optimization using artificial neural network," Renewable Energy, Elsevier, vol. 181(C), pages 914-932.
    17. Lv, Chengkun & Huang, Qian & Wang, Ziao & Chang, Juntao & Yu, Daren, 2024. "Mode transition control law analysis of ammonia MIPCC aeroengine considering inlet–compressor safety matching," Energy, Elsevier, vol. 288(C).
    18. Szturgulewski, Kacper & Głuch, Jerzy & Drosińska-Komor, Marta & Ziółkowski, Paweł & Gardzilewicz, Andrzej & Brzezińska-Gołębiewska, Katarzyna, 2024. "Hybrid geothermal-fossil power cycle analysis in a Polish setting with a focus on off-design performance and CO2 emissions reductions," Energy, Elsevier, vol. 299(C).
    19. Abdalla, Muftah S.M. & Balli, Ozgur & Adali, Osama H. & Korba, Peter & Kale, Utku, 2023. "Thermodynamic, sustainability, environmental and damage cost analyses of jet fuel starter gas turbine engine," Energy, Elsevier, vol. 267(C).
    20. Seljak, T. & Buffi, M. & Valera-Medina, A. & Chong, C.T. & Chiaramonti, D. & Katrašnik, T., 2020. "Bioliquids and their use in power generation – A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s036054422403648x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.