IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224036466.html
   My bibliography  Save this article

Analysis of influencing factors on the performance of wavy-shape solar trombe walls based on orthogonal experimental design and simulation methods

Author

Listed:
  • Shen, Yongliang
  • Chen, Hongkuan
  • Liu, Shuli
  • Ji, Wenjie
  • Jin, Haibo
  • Khan, Sheher Yar
  • Kumar, Mahesh
  • Mazhar, Abdur Rehman

Abstract

The potential energy-saving benefits of a novel wavy-shaped Trombe wall have been demonstrated in previous research. However, due to the complexity of the physical processes involved and the presence of multiple influencing factors, definitive trends have not been identified or elucidated on the underlying mechanisms of performance enhancement. This study bridges this gap and investigates the effects of four primary influencing factors on the performance of the wavy-shaped Trombe wall. The orthogonal design of experiments is utilized to enhance research efficiency, and a methodology that integrates experimental techniques with computational fluid dynamics (CFD) simulation is employed to obtain precise data. Subsequently, analysis of variance and direct analysis are performed based on the collected data. The findings indicate that the maximum heat flux is observed at an intersection angle (β) of 95°, indicating optimal heat supply performance. Moreover, heat flux levels are comparable at intersection angles of 95°, 115°, and 135°. Furthermore, selecting a larger β is recommended when prioritizing enhanced ventilation in the design. Additionally, the solar altitude angle (αs), azimuth angle (γs), and solar radiation intensity (I) are all influential factors in the system's overall performance. Notably, γs emerges as the most impactful variable on system performance during operation.

Suggested Citation

  • Shen, Yongliang & Chen, Hongkuan & Liu, Shuli & Ji, Wenjie & Jin, Haibo & Khan, Sheher Yar & Kumar, Mahesh & Mazhar, Abdur Rehman, 2024. "Analysis of influencing factors on the performance of wavy-shape solar trombe walls based on orthogonal experimental design and simulation methods," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224036466
    DOI: 10.1016/j.energy.2024.133868
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224036466
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133868?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duan, Shuangping & Wang, Lin & Zhao, Zhiqiang & Zhang, Chengwang, 2021. "Experimental study on thermal performance of an integrated PCM Trombe wall," Renewable Energy, Elsevier, vol. 163(C), pages 1932-1941.
    2. Ke, Wei & Ji, Jie & Zhang, Chengyan & Xie, Hao & Tang, Yayun & Wang, Chuyao, 2023. "Effects of the PCM layer position on the comprehensive performance of a built-middle PV-Trombe wall system for building application in the heating season," Energy, Elsevier, vol. 267(C).
    3. Zhu, Na & Li, Shanshan & Hu, Pingfang & Lei, Fei & Deng, Renjie, 2019. "Numerical investigations on performance of phase change material Trombe wall in building," Energy, Elsevier, vol. 187(C).
    4. Wang, Dengjia & Hu, Liang & Du, Hu & Liu, Yanfeng & Huang, Jianxiang & Xu, Yanchao & Liu, Jiaping, 2020. "Classification, experimental assessment, modeling methods and evaluation metrics of Trombe walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    5. Ahmed, Omer K. & Hamada, Khalaf I. & Salih, Abdulrazzaq M., 2019. "Enhancement of the performance of Photovoltaic/Trombe wall system using the porous medium: Experimental and theoretical study," Energy, Elsevier, vol. 171(C), pages 14-26.
    6. Xiao, Yuling & Yang, Qianli & Fei, Fan & Li, Kai & Jiang, Yijun & Zhang, Yuanwen & Fukuda, Hiroatsu & Ma, Qingsong, 2024. "Review of Trombe wall technology: Trends in optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    7. Hu, Zhongting & He, Wei & Ji, Jie & Zhang, Shengyao, 2017. "A review on the application of Trombe wall system in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 976-987.
    8. Li, Niansi & Cao, Xuhui & Zhang, Guoji & Wang, Yiting & Hu, Xuan & Liu, Jin & Yu, Bendong & Ji, Jie & Liu, Xiaoyong, 2024. "The experimental and numerical study on a novel all-day PCM thermal-catalytic purified Trombe wall in winter," Energy, Elsevier, vol. 299(C).
    9. Bevilacqua, Piero & Bruno, Roberto & Szyszka, Jerzy & Cirone, Daniela & Rollo, Antonino, 2022. "Summer and winter performance of an innovative concept of Trombe wall for residential buildings," Energy, Elsevier, vol. 258(C).
    10. Hu, Zhongting & He, Wei & Ji, Jie & Hu, Dengyun & Lv, Song & Chen, Hongbing & Shen, Zhihe, 2017. "Comparative study on the annual performance of three types of building integrated photovoltaic (BIPV) Trombe wall system," Applied Energy, Elsevier, vol. 194(C), pages 81-93.
    11. Monghasemi, Nima & Vadiee, Amir, 2018. "A review of solar chimney integrated systems for space heating and cooling application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2714-2730.
    12. Zhou, Shiqiang & Razaqpur, A. Ghani, 2024. "CFD modeling and experimental validation of the thermal performance of a novel dynamic PCM Trombe wall: Comparison with the companion static wall with and without PCM," Applied Energy, Elsevier, vol. 353(PA).
    13. Liu, Huifang & Tan, Qianli & Shi, Ying & Yu, Bendong & Zhang, Mingyi, 2024. "Enhancing indoor thermal comfort and energy efficiency: A comparative study of RC-PCM Trombe wall performance," Renewable Energy, Elsevier, vol. 227(C).
    14. Maerefat, M. & Haghighi, A.P., 2010. "Natural cooling of stand-alone houses using solar chimney and evaporative cooling cavity," Renewable Energy, Elsevier, vol. 35(9), pages 2040-2052.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Dengjia & Hu, Liang & Du, Hu & Liu, Yanfeng & Huang, Jianxiang & Xu, Yanchao & Liu, Jiaping, 2020. "Classification, experimental assessment, modeling methods and evaluation metrics of Trombe walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    2. Xiao, Yuling & Yang, Qianli & Fei, Fan & Li, Kai & Jiang, Yijun & Zhang, Yuanwen & Fukuda, Hiroatsu & Ma, Qingsong, 2024. "Review of Trombe wall technology: Trends in optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    3. Asdaghi, Hoda & Fayaz, Rima, 2024. "The performance of a photovoltaic Trombe wall combined with phase change materials under climate change in Mashhad," Energy, Elsevier, vol. 310(C).
    4. Zhang, Lili & Hou, Yuyao & Liu, Zu’an & Du, Junfei & Xu, Long & Zhang, Guomin & Shi, Long, 2020. "Trombe wall for a residential building in Sichuan-Tibet alpine valley – A case study," Renewable Energy, Elsevier, vol. 156(C), pages 31-46.
    5. Xiao, Yuling & Fei, Fan & Zou, Junlong & Tian, Lei & Liang, Qian & Ma, Qingsong & Fukuda, Hiroatsu & Gao, Weijun, 2025. "Thermal performance optimization of a novel integrated photovoltaic thermal collector system," Renewable Energy, Elsevier, vol. 238(C).
    6. Li, Ao & Duan, Shuangping & Han, Rubing & Wang, Chaoyu, 2022. "Investigation on the dynamic thermal storage/release of the integrated PCM solar wall embedded with an evaporator," Renewable Energy, Elsevier, vol. 200(C), pages 1506-1516.
    7. Li, Niansi & Cao, Xuhui & Zhang, Guoji & Wang, Yiting & Hu, Xuan & Liu, Jin & Yu, Bendong & Ji, Jie & Liu, Xiaoyong, 2024. "The experimental and numerical study on a novel all-day PCM thermal-catalytic purified Trombe wall in winter," Energy, Elsevier, vol. 299(C).
    8. Xiao, Lan & Qin, Liang-Liang & Wu, Shuang-Ying, 2023. "Effect of PV-Trombe wall in the multi-storey building on standard effective temperature (SET)-based indoor thermal comfort," Energy, Elsevier, vol. 263(PB).
    9. Lech Lichołai & Aleksander Starakiewicz & Joanna Krasoń & Przemysław Miąsik, 2021. "The Influence of Glazing on the Functioning of a Trombe Wall Containing a Phase Change Material," Energies, MDPI, vol. 14(17), pages 1-19, August.
    10. Wang, Lin & Zhou, Jinzhi & Bisengimana, Emmanuel & Ji, Yasheng & Zhong, Wei & Yuan, Yanping & Lu, Lin, 2023. "Numerical study on the thermal and electrical performance of a novel MCHP PV-Trombe wall system," Energy, Elsevier, vol. 269(C).
    11. Islam, Nazrul & Irshad, Kashif & Zahir, Md Hasan & Islam, Saiful, 2021. "Numerical and experimental study on the performance of a Photovoltaic Trombe wall system with Venetian blinds," Energy, Elsevier, vol. 218(C).
    12. Yu, Bendong & Li, Niansi & Yan, Chengchu & Liu, Xiaoyong & Liu, Huifang & Ji, Jie & Xu, Xiaoping, 2022. "The comprehensive performance analysis on a novel high-performance air-purification-sterilization type PV-Trombe wall," Renewable Energy, Elsevier, vol. 182(C), pages 1201-1218.
    13. Cai, Yang & Shu, Zheng-Yu & He, Jian-Wei & Li, Yong-Cai & Cheng, Yuan-Da & Huang, Kai-Liang & Zhao, Fu-Yun, 2024. "A state-of-the-art review of solar-induced ventilation technology for built environment regulation: Classification, modeling, evaluation, potential and challenges," Energy, Elsevier, vol. 313(C).
    14. Xiaohang Shen & Nianping Li & Jiao Lu & Yongga A, 2020. "Heating Performance of Solar Building Integrated Wall under Natural Circulation," Energies, MDPI, vol. 13(23), pages 1-22, November.
    15. Aleksejs Prozuments & Anatolijs Borodinecs & Guna Bebre & Diana Bajare, 2023. "A Review on Trombe Wall Technology Feasibility and Applications," Sustainability, MDPI, vol. 15(5), pages 1-15, February.
    16. Jerzy Szyszka, 2022. "From Direct Solar Gain to Trombe Wall: An Overview on Past, Present and Future Developments," Energies, MDPI, vol. 15(23), pages 1-25, November.
    17. Li, Yazi & Lei, Yonggang & Yan, Yao & Song, Chongfang, 2024. "Thermal performance analysis of a Trombe wall with the multi-row channel PCM wallboard," Energy, Elsevier, vol. 313(C).
    18. Zheng-Yu, Shu & Ying-Xi, Huang & Jian-Wei, He & Zhang, Wang & Hai-Tao, Wang & Shan-Xun, Sun & Yang, Cai & Fu-Yun, Zhao, 2024. "Functional ventilation building envelope integrated photovoltaic modules and phrase change material in subtropical climate: An in-depth numerical investigation," Energy, Elsevier, vol. 307(C).
    19. Wu, Shuang-Ying & Xu, Li & Xiao, Lan, 2020. "Air purification and thermal performance of photocatalytic-Trombe wall based on multiple physical fields coupling," Renewable Energy, Elsevier, vol. 148(C), pages 338-348.
    20. Zhou, Yaping & Zhu, Jiangtian & Zhang, Yuan & Zhou, Xinli & Sun, Xiaoqin, 2024. "Structure and regional optimization of a phase change material Trombe wall system," Energy, Elsevier, vol. 305(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224036466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.