IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6288-d453111.html
   My bibliography  Save this article

Heating Performance of Solar Building Integrated Wall under Natural Circulation

Author

Listed:
  • Xiaohang Shen

    (College of Civil Engineering, Hunan University, Changsha 410082, China)

  • Nianping Li

    (College of Civil Engineering, Hunan University, Changsha 410082, China)

  • Jiao Lu

    (School of Civil Engineering and Mechanics, Xiangtan University, Xiangtan City 411105, China)

  • Yongga A

    (College of Civil Engineering, Hunan University, Changsha 410082, China)

Abstract

This paper presented a building façade combined with photothermal technology where a water circulation system, including a thermal radiation plate and a solar collector, was installed. When heated by solar radiation, the water in the system transfered part of the solar heat to the room through natural circulation by buoyancy caused by density difference. During the cold season, the solar heat efficiency of the façade under natural circulation was studied through experiments and numerical simulations. The results show that the simulated values of the model established by MATLAB were in good agreement with the experimental values. Under the action of natural circulation, good solar energy utilization efficiency could be obtained by the façade. When solar irradiance was 1100 W/m 2 , the heat gain of the solar collector was 1672 W, of which the heat delivered to the recycled water and supplied to indoor was 1184 W, and the solar heat efficiency could reach 71%. Both the pipeline impedance and the height difference between radiation plate center and solar collector center had a great influence on temperature change of water supply in this system, whereas had little impact on thermal supply and solar heat efficiency of this system.

Suggested Citation

  • Xiaohang Shen & Nianping Li & Jiao Lu & Yongga A, 2020. "Heating Performance of Solar Building Integrated Wall under Natural Circulation," Energies, MDPI, vol. 13(23), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6288-:d:453111
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6288/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6288/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Quinn Daigle & Paul G. O’Brien, 2020. "Heat Generated Using Luminescent Solar Concentrators for Building Energy Applications," Energies, MDPI, vol. 13(21), pages 1-11, October.
    2. Ibrahim, Mohamad & Wurtz, Etienne & Biwole, Pascal Henry & Achard, Patrick, 2014. "Transferring the south solar energy to the north facade through embedded water pipes," Energy, Elsevier, vol. 78(C), pages 834-845.
    3. Liu, Zhijian & Zhou, Qingxu & Tian, Zhiyong & He, Bao-jie & Jin, Guangya, 2019. "A comprehensive analysis on definitions, development, and policies of nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    4. Lee, Kyoung Ok & Medina, Mario A. & Raith, Erik & Sun, Xiaoqin, 2015. "Assessing the integration of a thin phase change material (PCM) layer in a residential building wall for heat transfer reduction and management," Applied Energy, Elsevier, vol. 137(C), pages 699-706.
    5. Omrany, Hossein & Ghaffarianhoseini, Ali & Ghaffarianhoseini, Amirhosein & Raahemifar, Kaamran & Tookey, John, 2016. "Application of passive wall systems for improving the energy efficiency in buildings: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1252-1269.
    6. Hu, Zhongting & He, Wei & Ji, Jie & Hu, Dengyun & Lv, Song & Chen, Hongbing & Shen, Zhihe, 2017. "Comparative study on the annual performance of three types of building integrated photovoltaic (BIPV) Trombe wall system," Applied Energy, Elsevier, vol. 194(C), pages 81-93.
    7. Brito, M.C. & Freitas, S. & Guimarães, S. & Catita, C. & Redweik, P., 2017. "The importance of facades for the solar PV potential of a Mediterranean city using LiDAR data," Renewable Energy, Elsevier, vol. 111(C), pages 85-94.
    8. Liang, Ruobing & Wang, Peng & Zhou, Chao & Pan, Qiangguang & Riaz, Ahmad & Zhang, Jili, 2020. "Thermal performance study of an active solar building façade with specific PV/T hybrid modules," Energy, Elsevier, vol. 191(C).
    9. Zhu, Na & Li, Shanshan & Hu, Pingfang & Lei, Fei & Deng, Renjie, 2019. "Numerical investigations on performance of phase change material Trombe wall in building," Energy, Elsevier, vol. 187(C).
    10. Wang, Dengjia & Hu, Liang & Du, Hu & Liu, Yanfeng & Huang, Jianxiang & Xu, Yanchao & Liu, Jiaping, 2020. "Classification, experimental assessment, modeling methods and evaluation metrics of Trombe walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    11. Chen, Wei & Liu, Wei, 2004. "Numerical analysis of heat transfer in a composite wall solar-collector system with a porous absorber," Applied Energy, Elsevier, vol. 78(2), pages 137-149, June.
    12. Sakhaei, Seyed Ali & Valipour, Mohammad Sadegh, 2019. "Performance enhancement analysis of The flat plate collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 186-204.
    13. Enghok Leang & Pierre Tittelein & Laurent Zalewski & Stéphane Lassue, 2020. "Design Optimization of a Composite Solar Wall Integrating a PCM in a Individual House: Heating Demand and Thermal Comfort Considerations," Energies, MDPI, vol. 13(21), pages 1-29, October.
    14. Ali, Ihsan & Shafiullah, GM & Urmee, Tania, 2018. "A preliminary feasibility of roof-mounted solar PV systems in the Maldives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 18-32.
    15. Angelo Zarrella & Roberto Zecchin & Philippe Pasquier & Diego Guzzon & Enrico Prataviera & Jacopo Vivian & Michele De Carli & Giuseppe Emmi, 2020. "Analysis of Retrofit Solutions of a Ground Source Heat Pump System: An Italian Case Study," Energies, MDPI, vol. 13(21), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Dengjia & Hu, Liang & Du, Hu & Liu, Yanfeng & Huang, Jianxiang & Xu, Yanchao & Liu, Jiaping, 2020. "Classification, experimental assessment, modeling methods and evaluation metrics of Trombe walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    2. Yu, Bendong & Fan, Miaomiao & Gu, Tao & Xia, Xiaokang & Li, Niansi, 2022. "The performance analysis of the photo-thermal driven synergetic catalytic PV-Trombe wall," Renewable Energy, Elsevier, vol. 192(C), pages 264-278.
    3. Yu, Bendong & Li, Niansi & Yan, Chengchu & Liu, Xiaoyong & Liu, Huifang & Ji, Jie & Xu, Xiaoping, 2022. "The comprehensive performance analysis on a novel high-performance air-purification-sterilization type PV-Trombe wall," Renewable Energy, Elsevier, vol. 182(C), pages 1201-1218.
    4. Zhang, Lili & Hou, Yuyao & Liu, Zu’an & Du, Junfei & Xu, Long & Zhang, Guomin & Shi, Long, 2020. "Trombe wall for a residential building in Sichuan-Tibet alpine valley – A case study," Renewable Energy, Elsevier, vol. 156(C), pages 31-46.
    5. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Yu, Jinghua & Xu, Xinhua & Su, Xiaosong, 2020. "Towards net zero energy building: The application potential and adaptability of photovoltaic-thermoelectric-battery wall system," Applied Energy, Elsevier, vol. 258(C).
    6. Rosaria E.C. Amaral & Joel Brito & Matt Buckman & Elicia Drake & Esther Ilatova & Paige Rice & Carlos Sabbagh & Sergei Voronkin & Yewande S. Abraham, 2020. "Waste Management and Operational Energy for Sustainable Buildings: A Review," Sustainability, MDPI, vol. 12(13), pages 1-21, July.
    7. Sohani, Ali & Sayyaadi, Hoseyn & Miremadi, Seyed Rahman & Yang, Xiaohu & Doranehgard, Mohammad Hossein & Nizetic, Sandro, 2023. "Determination of the best air space value for installation of a PV façade technology based on 4E characteristics," Energy, Elsevier, vol. 262(PB).
    8. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & Wu, Zhenghong & He, Xihua, 2017. "Performance analysis of a self-adaptive building integrated photovoltaic thermoelectric wall system in hot summer and cold winter zone of China," Energy, Elsevier, vol. 140(P1), pages 584-600.
    9. Zhang, Chen & Li, Zhixin & Jiang, Haihua & Luo, Yongqiang & Xu, Shen, 2021. "Deep learning method for evaluating photovoltaic potential of urban land-use: A case study of Wuhan, China," Applied Energy, Elsevier, vol. 283(C).
    10. Nan Yang & Weixiu Shi & Zihong Zhou, 2023. "Research on Application and International Policy of Renewable Energy in Buildings," Sustainability, MDPI, vol. 15(6), pages 1-25, March.
    11. Omrany, Hossein & Ghaffarianhoseini, Ali & Ghaffarianhoseini, Amirhosein & Raahemifar, Kaamran & Tookey, John, 2016. "Application of passive wall systems for improving the energy efficiency in buildings: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1252-1269.
    12. Sree Harsha Bandaru & Victor Becerra & Sourav Khanna & Jovana Radulovic & David Hutchinson & Rinat Khusainov, 2021. "A Review of Photovoltaic Thermal (PVT) Technology for Residential Applications: Performance Indicators, Progress, and Opportunities," Energies, MDPI, vol. 14(13), pages 1-48, June.
    13. Zhou, Shiqiang & Razaqpur, A. Ghani, 2022. "Efficient heating of buildings by passive solar energy utilizing an innovative dynamic building envelope incorporating phase change material," Renewable Energy, Elsevier, vol. 197(C), pages 305-319.
    14. Yu, Bendong & He, Wei & Li, Niansi & Wang, Liping & Cai, Jingyong & Chen, Hongbing & Ji, Jie & Xu, Gang, 2017. "Experimental and numerical performance analysis of a TC-Trombe wall," Applied Energy, Elsevier, vol. 206(C), pages 70-82.
    15. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    16. Xiao, Lan & Qin, Liang-Liang & Wu, Shuang-Ying, 2023. "Effect of PV-Trombe wall in the multi-storey building on standard effective temperature (SET)-based indoor thermal comfort," Energy, Elsevier, vol. 263(PB).
    17. Lech Lichołai & Aleksander Starakiewicz & Joanna Krasoń & Przemysław Miąsik, 2021. "The Influence of Glazing on the Functioning of a Trombe Wall Containing a Phase Change Material," Energies, MDPI, vol. 14(17), pages 1-19, August.
    18. Abdulmajeed Mohamad & Jan Taler & Paweł Ocłoń, 2019. "Trombe Wall Utilization for Cold and Hot Climate Conditions," Energies, MDPI, vol. 12(2), pages 1-18, January.
    19. Wang, Lin & Zhou, Jinzhi & Bisengimana, Emmanuel & Ji, Yasheng & Zhong, Wei & Yuan, Yanping & Lu, Lin, 2023. "Numerical study on the thermal and electrical performance of a novel MCHP PV-Trombe wall system," Energy, Elsevier, vol. 269(C).
    20. Gong, Qipeng & Kou, Fangcheng & Sun, Xiaoyu & Zou, Yu & Mo, Jinhan & Wang, Xin, 2022. "Towards zero energy buildings: A novel passive solar house integrated with flat gravity-assisted heat pipes," Applied Energy, Elsevier, vol. 306(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6288-:d:453111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.