IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics036054422403620x.html
   My bibliography  Save this article

An online train-grid integration energy optimization method for urban rail system

Author

Listed:
  • Wei, Wei
  • Zhang, Gang
  • Wang, Renyu
  • Xiong, Wei
  • Yu, Hong

Abstract

The energy consumption of urban rail systems is influenced by the coordination between power supply system and train operation. Currently, these two aspects are not aligned in energy optimization efforts, leading to substantial energy wastage. This paper proposes an energy optimization method that integrates power supply system and train operation. Firstly, the factors influencing system energy optimization are analyzed, and optimization objectives and variables are established. Subsequently, an online train-grid integration energy optimization strategy is outlined, encompassing flexible traction power supply system regulation and train operation regulation. Finally, validation is conducted through simulation encompassing a diverse range of operational scenarios, ensuring a comprehensive verification of its performance and applicability. The results indicate that the implementation of energy-efficient regulation strategies for train-grid integration yields a notable reduction in overall energy consumption, amounting to a reduction of up to 10.75 %. The proposed method effectively optimizes system energy in diverse scenarios, thereby consolidating and maximizing the energy-saving potential within the fields of electrical engineering and transportation. This paper offers novel insights for interdisciplinary operational enhancements within the urban rail transit.

Suggested Citation

  • Wei, Wei & Zhang, Gang & Wang, Renyu & Xiong, Wei & Yu, Hong, 2024. "An online train-grid integration energy optimization method for urban rail system," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s036054422403620x
    DOI: 10.1016/j.energy.2024.133842
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422403620X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133842?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Zhanhe & Li, Xiaoqian & Lu, Chao & Ma, Kechun & Bao, Weihan, 2024. "Carbon emission responsibility accounting in renewable energy-integrated DC traction power systems," Applied Energy, Elsevier, vol. 355(C).
    2. Huang, Yeran & Yang, Lixing & Tang, Tao & Gao, Ziyou & Cao, Fang, 2017. "Joint train scheduling optimization with service quality and energy efficiency in urban rail transit networks," Energy, Elsevier, vol. 138(C), pages 1124-1147.
    3. Wang, Xuekai & Tang, Tao & Su, Shuai & Yin, Jiateng & Gao, Ziyou & Lv, Nan, 2021. "An integrated energy-efficient train operation approach based on the space-time-speed network methodology," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Wenliang & Huang, Yu & Deng, Lianbo & Qin, Jin, 2023. "Collaborative optimization of energy-efficient train schedule and train circulation plan for urban rail," Energy, Elsevier, vol. 263(PA).
    2. Huang, Yu & Zhou, Wenliang & Qin, Jin & Deng, Lianbo, 2023. "Optimization of energy-efficiency train schedule considering passenger demand and rolling stock circulation plan of subway line," Energy, Elsevier, vol. 275(C).
    3. Ziyu Wu & Chunhai Gao & Tao Tang, 2021. "An Optimal Train Speed Profile Planning Method for Induction Motor Traction System," Energies, MDPI, vol. 14(16), pages 1-14, August.
    4. Li, Jiajie & Bai, Yun & Chen, Yao & Yang, Lingling & Wang, Qian, 2022. "A two-stage stochastic optimization model for integrated tram timetable and speed control with uncertain dwell times," Energy, Elsevier, vol. 260(C).
    5. He, Deqiang & Teng, Xiaoliang & Chen, Yanjun & Liu, Bin & Wang, Heliang & Li, Xianwang & Ma, Rui, 2022. "Energy saving in metro ventilation system based on multi-factor analysis and air characteristics of piston vent," Applied Energy, Elsevier, vol. 307(C).
    6. Zhang, Yongxiang & D'Ariano, Andrea & He, Bisheng & Peng, Qiyuan, 2019. "Microscopic optimization model and algorithm for integrating train timetabling and track maintenance task scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 237-278.
    7. Li, Wenxin & Peng, Qiyuan & Wen, Chao & Wang, Pengling & Lessan, Javad & Xu, Xinyue, 2020. "Joint optimization of delay-recovery and energy-saving in a metro system: A case study from China," Energy, Elsevier, vol. 202(C).
    8. Feng, Zongbao & Chen, Weiya & Liu, Yang & Chen, Hongyu & Skibniewski, Mirosław J., 2023. "Long-term equilibrium relationship analysis and energy-saving measures of metro energy consumption and its influencing factors based on cointegration theory and an ARDL model," Energy, Elsevier, vol. 263(PD).
    9. Ning, Jingjie & Zhou, Yonghua & Long, Fengchu & Tao, Xin, 2018. "A synergistic energy-efficient planning approach for urban rail transit operations," Energy, Elsevier, vol. 151(C), pages 854-863.
    10. Liu, Minzhang & Zhu, Chunguang & Zhang, Huan & Zheng, Wandong & You, Shijun & Campana, Pietro Elia & Yan, Jinyue, 2019. "The environment and energy consumption of a subway tunnel by the influence of piston wind," Applied Energy, Elsevier, vol. 246(C), pages 11-23.
    11. Rizqi, Zakka Ugih & Chou, Shuo-Yan & Khairunisa, Adinda, 2024. "Energy harvesting for automated storage and retrieval system with sustainable configuration of storage assignment and input/output point," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 192(C).
    12. Lian, Deheng & Mo, Pengli & D’Ariano, Andrea & Gao, Ziyou & Yang, Lixing, 2024. "Energy-saving time allocation strategy with uncertain dwell times in urban rail transit: Two-stage stochastic model and nested dynamic programming framework," European Journal of Operational Research, Elsevier, vol. 317(1), pages 219-242.
    13. Tian, Xiaopeng & Niu, Huimin, 2020. "Optimization of demand-oriented train timetables under overtaking operations: A surrogate-dual-variable column generation for eliminating indivisibility," Transportation Research Part B: Methodological, Elsevier, vol. 142(C), pages 143-173.
    14. Jiao, Qianhui & Wang, Jinghui & Cheng, Long & Chen, Xuewu & Yu, Qing, 2025. "Carbon emission reduction effects of heterogeneous car travelers under green travel incentive strategies," Applied Energy, Elsevier, vol. 379(C).
    15. Chen, Zhiwei & Li, Xiaopeng & Zhou, Xuesong, 2020. "Operational design for shuttle systems with modular vehicles under oversaturated traffic: Continuous modeling method," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 76-100.
    16. Kang, Liujiang & Sun, Huijun & Wu, Jianjun & Gao, Ziyou, 2020. "Last train station-skipping, transfer-accessible and energy-efficient scheduling in subway networks," Energy, Elsevier, vol. 206(C).
    17. Pan, Deng & Zhao, Liting & Luo, Qing & Zhang, Chuansheng & Chen, Zejun, 2018. "Study on the performance improvement of urban rail transit system," Energy, Elsevier, vol. 161(C), pages 1154-1171.
    18. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Palombo, Adolfo, 2020. "Enhancing trains envelope – heating, ventilation, and air conditioning systems: A new dynamic simulation approach for energy, economic, environmental impact and thermal comfort analyses," Energy, Elsevier, vol. 204(C).
    19. Mo, Pengli & D’Ariano, Andrea & Yang, Lixing & Veelenturf, Lucas P. & Gao, Ziyou, 2021. "An exact method for the integrated optimization of subway lines operation strategies with asymmetric passenger demand and operating costs," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 283-321.
    20. Wang, Xuekai & D’Ariano, Andrea & Su, Shuai & Tang, Tao, 2023. "Cooperative train control during the power supply shortage in metro system: A multi-agent reinforcement learning approach," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 244-278.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s036054422403620x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.