IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v389y2025ics0306261925004453.html
   My bibliography  Save this article

Carbon-aware day-ahead optimal dispatch for integrated power grid thermal systems with aggregated distributed resources

Author

Listed:
  • Gou, Tong
  • Xu, Yinliang
  • Sun, Hongbin

Abstract

The accommodation of large-scale renewable energy and distributed resources with uncertainty and variability imposes higher flexibility requirements in integrated energy systems. This article proposes a low-carbon day-ahead optimal scheduling model for the integrated power grid thermal systems. First, the network topology and safety operation constraints of the integrated power grid thermal system are considered to ensure the economical and stable operation of the system. Second, a polyhedral based thermally controllable residential load aggregation/ disaggregation method is proposed to obtain the approximate feasible region and equivalent cost parameters of the aggregator, and the uncertainty of the parameters is modeled through distributed robust chance constraints. Third, on the basis of the theory of carbon emission flow, the carbon potential of the prescheduled power grid thermal system is analyzed to guide the development of resource scheduling strategies. Method studies with different scales of integrated power grid thermal systems were conducted, and the results showed that the proposed model can reduce carbon emissions by 8.67 % and 10.71 %, respectively, while ensuring economic benefits and safety.

Suggested Citation

  • Gou, Tong & Xu, Yinliang & Sun, Hongbin, 2025. "Carbon-aware day-ahead optimal dispatch for integrated power grid thermal systems with aggregated distributed resources," Applied Energy, Elsevier, vol. 389(C).
  • Handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004453
    DOI: 10.1016/j.apenergy.2025.125715
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261925004453
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2025.125715?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:389:y:2025:i:c:s0306261925004453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.