IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224035175.html
   My bibliography  Save this article

Research on CO2 sequestration in saline aquifers with different relative permeability considering CO2 phase conditions

Author

Listed:
  • Zhou, Yiyang
  • Tang, Ligen
  • Song, Zhiyong
  • Pan, Bin
  • Yue, Ming
  • Liu, Jinzi
  • Song, Hongqing

Abstract

Saline aquifers are the most feasible potential site for the storage of CO2. The behavior of CO2 in different phase states may significantly affect the flow properties and sequestration efficiency. It is important to understand and predict the effects of different CO2 phases. This study conducted relative permeability tests under two experimental conditions with CO2 in different phases. Incorporating experimental data into reservoir-scale simulations to analyze the effects of different phases of CO2 on structural, solubility, and residual sequestration mechanisms, and to predict CO2 behavior in saline aquifers. The results show that the CO2 relative permeability and residual CO2 saturation are high under supercritical conditions. It is more favorable to consider the relative permeability and hysteresis effects on the supercritical CO2 results, with a more dispersed distribution of CO2 at the bottom of the reservoir. There was a significant difference in residual sequestration, with the gaseous group showing a 14.16 % reduction in residual sequestration and a 4.27 % reduction in total sequestration compared to the supercritical group. The ratio of structural sequestration, solubility sequestration, and residual sequestration in the total sequestration in this study is about 50 %:30 %:20 %.

Suggested Citation

  • Zhou, Yiyang & Tang, Ligen & Song, Zhiyong & Pan, Bin & Yue, Ming & Liu, Jinzi & Song, Hongqing, 2024. "Research on CO2 sequestration in saline aquifers with different relative permeability considering CO2 phase conditions," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035175
    DOI: 10.1016/j.energy.2024.133739
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224035175
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133739?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xin & Li, Shaohua & Tong, Baocai & Jiang, Lanlan & Lv, Pengfei & Zhang, Yi & Liu, Yu & Song, Yongchen, 2024. "Multiscale wettability characterization under CO2 geological storage conditions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Mohammad Jafari & Jongwon Jung, 2017. "Direct Measurement of Static and Dynamic Contact Angles Using a Random Micromodel Considering Geological CO 2 Sequestration," Sustainability, MDPI, vol. 9(12), pages 1-17, December.
    3. Jiang, Xi, 2011. "A review of physical modelling and numerical simulation of long-term geological storage of CO2," Applied Energy, Elsevier, vol. 88(11), pages 3557-3566.
    4. Jeong, Gu Sun & Lee, Jaehyoung & Ki, Seil & Huh, Dae-Gee & Park, Chan-Hee, 2017. "Effects of viscosity ratio, interfacial tension and flow rate on hysteric relative permeability of CO2/brine systems," Energy, Elsevier, vol. 133(C), pages 62-69.
    5. Jiang, Jieyun & Rui, Zhenhua & Hazlett, Randy & Lu, Jun, 2019. "An integrated technical-economic model for evaluating CO2 enhanced oil recovery development," Applied Energy, Elsevier, vol. 247(C), pages 190-211.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aysylu Askarova & Aliya Mukhametdinova & Strahinja Markovic & Galiya Khayrullina & Pavel Afanasev & Evgeny Popov & Elena Mukhina, 2023. "An Overview of Geological CO 2 Sequestration in Oil and Gas Reservoirs," Energies, MDPI, vol. 16(6), pages 1-34, March.
    2. You, Junyu & Ampomah, William & Sun, Qian, 2020. "Co-optimizing water-alternating-carbon dioxide injection projects using a machine learning assisted computational framework," Applied Energy, Elsevier, vol. 279(C).
    3. Nasvi, M.C.M. & Ranjith, P.G. & Sanjayan, J., 2014. "Effect of different mix compositions on apparent carbon dioxide (CO2) permeability of geopolymer: Suitability as well cement for CO2 sequestration wells," Applied Energy, Elsevier, vol. 114(C), pages 939-948.
    4. Du, Meng & Zhengming, Yang & Lv, Weifeng & Xiao, Qainhua & Xiang, Qi & Yao, Lanlan & Feng, Chun, 2024. "Experimental study on microscopic production characteristics and influencing factors during dynamic imbibition of shale reservoir with online NMR and fractal theory," Energy, Elsevier, vol. 310(C).
    5. Abdoli, B. & Hooshmand, F. & MirHassani, S.A., 2023. "A novel stochastic programming model under endogenous uncertainty for the CCS-EOR planning problem," Applied Energy, Elsevier, vol. 338(C).
    6. Meiheriayi Mutailipu & Qingnan Xue & Tao Li & Yande Yang & Fusheng Xue, 2023. "Thermodynamic Properties of a Gas–Liquid–Solid System during the CO 2 Geological Storage and Utilization Process: A Review," Energies, MDPI, vol. 16(21), pages 1-30, October.
    7. Wang, Xin & Li, Shaohua & Tong, Baocai & Jiang, Lanlan & Lv, Pengfei & Zhang, Yi & Liu, Yu & Song, Yongchen, 2024. "Multiscale wettability characterization under CO2 geological storage conditions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    8. Guo, Tiankui & Zhang, Yuelong & He, Jiayuan & Gong, Facheng & Chen, Ming & Liu, Xiaoqiang, 2021. "Research on geothermal development model of abandoned high temperature oil reservoir in North China oilfield," Renewable Energy, Elsevier, vol. 177(C), pages 1-12.
    9. Meng, Qingliang & Jiang, Xi, 2014. "Numerical analyses of the solubility trapping of CO2 storage in geological formations," Applied Energy, Elsevier, vol. 130(C), pages 581-591.
    10. Jiang, Xi & Akber Hassan, Wasim A. & Gluyas, Jon, 2013. "Modelling and monitoring of geological carbon storage: A perspective on cross-validation," Applied Energy, Elsevier, vol. 112(C), pages 784-792.
    11. Ampomah, W. & Balch, R.S. & Cather, M. & Will, R. & Gunda, D. & Dai, Z. & Soltanian, M.R., 2017. "Optimum design of CO2 storage and oil recovery under geological uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 80-92.
    12. Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.
    13. Lee, Jui-Yuan & Tan, Raymond R. & Chen, Cheng-Liang, 2014. "A unified model for the deployment of carbon capture and storage," Applied Energy, Elsevier, vol. 121(C), pages 140-148.
    14. Becerra-Fernandez, Mauricio & Cosenz, Federico & Dyner, Isaac, 2020. "Modeling the natural gas supply chain for sustainable growth policy," Energy, Elsevier, vol. 205(C).
    15. Retkowski, Waldemar & Ziefle, Gesa & Thöming, Jorg, 2015. "Evaluation of different heat extraction strategies for shallow vertical ground-source heat pump systems," Applied Energy, Elsevier, vol. 149(C), pages 259-271.
    16. Liu, Yueliang & Rui, Zhenhua & Yang, Tao & Dindoruk, Birol, 2022. "Using propanol as an additive to CO2 for improving CO2 utilization and storage in oil reservoirs," Applied Energy, Elsevier, vol. 311(C).
    17. Chen, Long & Xu, Guiyin & Rui, Zhenhua & Alshawabkeh, Akram N., 2019. "Demonstration of a feasible energy-water-environment nexus: Waste sulfur dioxide for water treatment," Applied Energy, Elsevier, vol. 250(C), pages 1011-1022.
    18. Lee, Jaehee & Han, Sang-Jun & Wee, Jung-Ho, 2014. "Synthesis of dry sorbents for carbon dioxide capture using coal fly ash and its performance," Applied Energy, Elsevier, vol. 131(C), pages 40-47.
    19. Li, Didi & Jiang, Xi, 2017. "Numerical investigation of the partitioning phenomenon of carbon dioxide and multiple impurities in deep saline aquifers," Applied Energy, Elsevier, vol. 185(P2), pages 1411-1423.
    20. Mostafa Ganjeh‐Ghazvini & Mohsen Masihi & Morteza Baghalha, 2016. "Effect of connectivity misrepresentation on accuracy of upscaled models in oil recovery by CO 2 injection," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 6(3), pages 339-351, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224035175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.