IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v313y2024ics0360544224034480.html
   My bibliography  Save this article

Data-driven optimization of nano-PCM arrangements for battery thermal management based on Lattice Boltzmann simulation

Author

Listed:
  • Zhang, Liwei
  • Shang, Bichen
  • Sun, Weijie
  • Tao, Yao
  • Li, Xueren
  • Tu, Jiyuan

Abstract

An efficient Battery Thermal Management System (BTMS) is vital for maximizing electric vehicle effectiveness and extending service life, essential for sustainable transportation. This study proposes a novel non-uniform nano-PCM distribution strategy within BTMS to tackle battery overheating challenges and further proposes a multi-objective optimization framework combining Back Propagation Neural Networks (BPNN) and Genetic Algorithm (GA) to achieve optimal design solutions for BTMS. Optimization data is derived from the well-validated Lattice Boltzmann Method (LBM) results across 343 cases. Initial evaluations show that a negative gradient distributed nano-PCM (Type 2) improves melting rate, heat dissipation power, and temperature uniformity by 4.67%, 4.87%, 19%, and 7.0%, respectively. The BPNN-GA optimization framework satisfactorily correlates nanoparticle distribution with four evaluation metrics, achieving R2 values from 0.9469 to 0.9987. Optimization improves melting rate, heat dissipation power, and regional and inter-regional temperature uniformity by 9.13%, 9.94%, 7.77%, and 29.73%, respectively. The BPNN-GA also demonstrates reasonable generalizability for the other two practical case scenarios with improvements in certain criteria up to 49.19%. This study highlights the potential of uneven nano-PCM configurations and the efficiency of the LBM-BPNN-GA framework in achieving superior thermal management for BTMS, which is expected to provide insights for future BTMS designs and implementations.

Suggested Citation

  • Zhang, Liwei & Shang, Bichen & Sun, Weijie & Tao, Yao & Li, Xueren & Tu, Jiyuan, 2024. "Data-driven optimization of nano-PCM arrangements for battery thermal management based on Lattice Boltzmann simulation," Energy, Elsevier, vol. 313(C).
  • Handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224034480
    DOI: 10.1016/j.energy.2024.133670
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224034480
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133670?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Patel, Jay R. & Rathod, Manish K., 2024. "Influence of battery cell spacing on thermal performance of phase change material filled lithium-ion battery pack," Energy, Elsevier, vol. 291(C).
    2. Zhang, Furen & Lu, Fu & Liang, Beibei & Zhu, Yilin & Gou, Huan & Xiao, Kang & He, Yanxiao, 2023. "Thermal performance analysis of a new type of branch-fin enhanced battery thermal management PCM module," Renewable Energy, Elsevier, vol. 206(C), pages 1049-1063.
    3. Kang, Zhuang & Peng, Qingguo & Yin, Ruixue & Yao, Zhengmin & Song, Yangyang & He, Biao, 2024. "Investigation of multifactorial effects on the thermal performance of battery pack inserted with multi-layer phase change materials," Energy, Elsevier, vol. 290(C).
    4. Jilte, Ravindra & Afzal, Asif & Panchal, Satyam, 2021. "A novel battery thermal management system using nano-enhanced phase change materials," Energy, Elsevier, vol. 219(C).
    5. Bharathiraja, R. & Ramkumar, T. & Selvakumar, M. & Radhika, N., 2024. "Thermal characteristics enhancement of Paraffin Wax Phase Change Material (PCM) for thermal storage applications," Renewable Energy, Elsevier, vol. 222(C).
    6. Yang, Huizhu & Li, Mingxuan & Wang, Zehui & Ma, Binjian, 2023. "A compact and lightweight hybrid liquid cooling system coupling with Z-type cold plates and PCM composite for battery thermal management," Energy, Elsevier, vol. 263(PE).
    7. Mo, Chongmao & Xie, Jiekai & Zhang, Guoqing & Zou, Zhiyang & Yang, Xiaoqing, 2024. "All-climate battery thermal management system integrating units-assembled phase change material module with forced air convection," Energy, Elsevier, vol. 294(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manisha, & Tiwari, Sumit & Sahdev, Ravinder Kumar & Chhabra, Deepak & Kumari, Meena & Ali, Arshad & Sehrawat, Ravin & Tiwari, Prabhakar, 2025. "Advancements and challenges in battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 209(C).
    2. Suresh, C. & Awasthi, Abhishek & Kumar, Binit & Im, Seong-kyun & Jeon, Yongseok, 2025. "Advances in battery thermal management for electric vehicles: A comprehensive review of hybrid PCM-metal foam and immersion cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    3. Chen-Lung Wang & Jik Chang Leong, 2024. "Analysis of Thermal Management Strategies for 21700 Lithium-Ion Batteries Incorporating Phase Change Materials and Porous Copper Foam with Different Battery Orientations," Energies, MDPI, vol. 17(7), pages 1-27, March.
    4. An, Zhiguo & Liu, Huaixi & Gao, Weilin & Zhang, Jianping, 2024. "A triple-hybrid battery thermal management system with drop-shaped fin channels for improving weather tolerance," Energy, Elsevier, vol. 307(C).
    5. Gu, Heng & Chang, Yunwei & Chen, Yuanyuan & Guo, Jiang rong & Zou, Deqiu, 2024. "Experimental research on pipeless power battery cooling system using shape-stabilized phase change materials (SSPCM) coupled with seawater," Energy, Elsevier, vol. 286(C).
    6. Wang, Libiao & Zuo, Hongyan & Zhang, Bin & Jia, Guohai, 2025. "Effects of supercritical carbon dioxide cooling on heat dissipation performance enhancement of a prismatic LiFePO4 battery pack," Energy, Elsevier, vol. 314(C).
    7. Luo, Ding & Wu, Zihao & Jiang, Li & Yan, Yuying & Chen, Wei-Hsin & Cao, Jin & Cao, Bingyang, 2024. "Realizing rapid cooling and latent heat recovery in the thermoelectric-based battery thermal management system at high temperatures," Applied Energy, Elsevier, vol. 370(C).
    8. Wang, Chuang & Liu, Qixing & Wang, Zhiqiang & Cheng, Xingxing, 2025. "A review of power battery cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    9. Wang, Yuan & Wang, Yutao & He, Tianbiao & Mao, Ning, 2024. "A numerical study on a hybrid battery thermal management system based on PCM and wavy microchannel liquid cooling," Renewable Energy, Elsevier, vol. 235(C).
    10. Hong Shi & Mengmeng Cheng & Yi Feng & Chenghui Qiu & Caiyue Song & Nenglin Yuan & Chuanzhi Kang & Kaijie Yang & Jie Yuan & Yonghao Li, 2023. "Thermal Management Techniques for Lithium-Ion Batteries Based on Phase Change Materials: A Systematic Review and Prospective Recommendations," Energies, MDPI, vol. 16(2), pages 1-23, January.
    11. Li, Yuming & Wang, Tingyu & Li, Xinxi & Zhang, Guoqing & Chen, Kai & Yang, Wensheng, 2022. "Experimental investigation on thermal management system with flame retardant flexible phase change material for retired battery module," Applied Energy, Elsevier, vol. 327(C).
    12. Shan, Shuai & Li, Li & Xu, Qiang & Ling, Lei & Xie, Yajun & Wang, Hongkang & Zheng, Keqing & Zhang, Lanchun & Bei, Shaoyi, 2023. "Numerical investigation of a compact and lightweight thermal management system with axially mounted cooling tubes for cylindrical lithium-ion battery module," Energy, Elsevier, vol. 274(C).
    13. Fan, Zhaohui & Gao, Renjing & Liu, Shutian, 2022. "Thermal conductivity enhancement and thermal saturation elimination designs of battery thermal management system for phase change materials based on triply periodic minimal surface," Energy, Elsevier, vol. 259(C).
    14. S. Tamilselvi & S. Gunasundari & N. Karuppiah & Abdul Razak RK & S. Madhusudan & Vikas Madhav Nagarajan & T. Sathish & Mohammed Zubair M. Shamim & C. Ahamed Saleel & Asif Afzal, 2021. "A Review on Battery Modelling Techniques," Sustainability, MDPI, vol. 13(18), pages 1-26, September.
    15. Zhang, Xiaohui & Li, Z. & Sajadi, S. Mohammad & Ajour, Mohammed N. & Abu-Hamdeh, Nidal H. & Salilih, Elias M. & Karimipour, Aliakbar & Viet, PMH, 2023. "Using a hybrid system to improve a lithium-ion battery in the presence of phase change material and the effect of air on the battery charge and discharge," Energy, Elsevier, vol. 284(C).
    16. Luo, Ding & Jiang, Li & Wu, Zihao, 2025. "Enhanced thermal performance of a hybrid battery thermal management system with sandwich-structure phase change materials at a high discharge rate," Energy, Elsevier, vol. 324(C).
    17. Duan, Xudong & Wang, Xin & Hu, Bohai & Wang, Jiarui & Wang, Simin, 2024. "Research on performance optimization of electrolytic cell: Non-parameter topology and parameter optimization," Renewable Energy, Elsevier, vol. 236(C).
    18. Yang, Huizhu & Li, Mingxuan & Wang, Zehui & Ma, Binjian, 2023. "A compact and lightweight hybrid liquid cooling system coupling with Z-type cold plates and PCM composite for battery thermal management," Energy, Elsevier, vol. 263(PE).
    19. Fateh Mebarek-Oudina & Ines Chabani, 2023. "Review on Nano Enhanced PCMs: Insight on nePCM Application in Thermal Management/Storage Systems," Energies, MDPI, vol. 16(3), pages 1-21, January.
    20. Shen, Zu-Guo & Chen, Shuai & Liu, Xun & Chen, Ben, 2021. "A review on thermal management performance enhancement of phase change materials for vehicle lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s0360544224034480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.