IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v298y2024ics036054422401137x.html
   My bibliography  Save this article

Comprehensive examination of topologically optimized thermo-fluid heat sinks

Author

Listed:
  • Waelveerakup, Sorravit
  • Thanomthong, Kasidith
  • Tantivimonkajorn, Punnapop
  • Wanittansirichok, Vichapol
  • Mongkholphan, Kanich
  • Sakamatapan, Kittipong
  • Promoppatum, Patcharapit
  • Wongwises, Somchai

Abstract

This study investigates the thermal performance of topologically optimized heat sinks. The primary aims are to conduct a comprehensive parametric study, compare thermal outputs with the benchmark model, and validate numerical simulations through experimental testing. Multi-objective topology optimization is formulated based on thermal compliance and power dissipation. Selected optimized models were built and tested. The parametric study revealed promising design variables, leading to numerical convergence with interconnected flow paths. The promising variables were found under weighted thermal compliances (wh) between 0.3 and 0.9 and targeted liquid fractions (θFV) between 0.5 and 0.8. Additionally, at low operating pressures, for example, at 0.01 kPa, the temperature difference between optimized and benchmark models could be as much as 30 °C. Nonetheless, the temperature difference between both models became smaller at higher operating pressures. Furthermore, the comparison of temperature measurements, pressure drops, and thermal imaging showed reasonable agreement between experimental and numerical results. Additionally, the effect of design variables on thermal performance was confirmed through experiments. The heat sink with higher wh exhibited a lower temperature than that of the model with lower wh. In summary, this research highlights the crucial role of design variables in achieving a balance between temperature and pressure drop.

Suggested Citation

  • Waelveerakup, Sorravit & Thanomthong, Kasidith & Tantivimonkajorn, Punnapop & Wanittansirichok, Vichapol & Mongkholphan, Kanich & Sakamatapan, Kittipong & Promoppatum, Patcharapit & Wongwises, Somchai, 2024. "Comprehensive examination of topologically optimized thermo-fluid heat sinks," Energy, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:energy:v:298:y:2024:i:c:s036054422401137x
    DOI: 10.1016/j.energy.2024.131364
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422401137X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131364?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:298:y:2024:i:c:s036054422401137x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.