IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v298y2024ics0360544224010739.html
   My bibliography  Save this article

Suppression effect prediction of mixed combustion with ammonia under sub-atmospheric pressure on flicker of methane laminar diffusion flame

Author

Listed:
  • Yang, Xiao
  • Ma, Shijiu
  • Gao, Jianmin
  • Du, Qian
  • Zhang, Yu
  • Dong, Hemin

Abstract

In high-altitude areas, suppressing the flicker of methane laminar diffusion flame and reducing carbon emissions simultaneously is a challenge. This paper proposes a combustion strategy involving sub-atmospheric pressure and ammonia mixing. Through high-speed imaging and schlieren techniques, the study explores the flame flicker patterns under mixing ratios of 0–60% ammonia at 0.5–1.0 atm, as well as the structural and dynamic characteristics of shear layers and vortices. The stable combustion mechanism of sub-atmospheric pressure and ammonia mixing is also analyzed. It was found that reducing the pressure reduced the flame Richardson number, eased the formation of vortices and weakened the interaction with the flame. The heat release rate of the flame decreases after mixing ammonia, which leads to a decrease in the density gradient of the shear layer and also slows down the formation of vortices. The characteristic values of flicker were quantified. Decreasing the pressure, the flicker frequency decreases. Increasing the ammonia mixing ratio, the flicker frequency increases and the oscillation amplitude shows a highly nonlinear decreasing trend. It is verified that the flicker frequency still satisfies the function form of the Strouhal-Froude number under sub-atmospheric pressure and ammonia mixed combustion.

Suggested Citation

  • Yang, Xiao & Ma, Shijiu & Gao, Jianmin & Du, Qian & Zhang, Yu & Dong, Hemin, 2024. "Suppression effect prediction of mixed combustion with ammonia under sub-atmospheric pressure on flicker of methane laminar diffusion flame," Energy, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224010739
    DOI: 10.1016/j.energy.2024.131300
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224010739
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131300?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224010739. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.