IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v295y2024ics0360544224008235.html
   My bibliography  Save this article

Leakage detection method of underground heating pipeline based on improved wavelet threshold function

Author

Listed:
  • Xu, Ziqiang
  • Li, Cheng
  • Mu, Lianbo
  • Wang, Suilin
  • Lu, Junhui
  • Lan, Yuncheng

Abstract

For urban heating pipeline network, the intelligent and precise detection is an important guarantee for urban heating infrastructure of the safe and low-carbon operation. Heating pipe network was directly buried in the soil and difficult to detect the leakage point due to lack of non-excavation detection method for rapid repair. An improved noise reduction algorithm of the wavelet threshold function coupled with the acoustic method was used for the directly buried pipe leakage detection. Large-scale leakage experimental tests were used to validate the reliability. The influences of temperature, pressure, flowrates and leakage distance on the frequency and time domains were then investigated. Results show that the improved threshold function could well detect the leakage for directly buried hot water heating pipes. When the temperature increases, the leakage frequency domain spreads from 200 - 800 Hz to 50–1500 Hz. The pressure, flow rate, and leak point location could affect the amplitude feature. The accuracy ranges of the improved method in the different location, temperature and pressure and flowrates are separately 0.11–2.36%, 0.11–1.96%,0.11–3.49% and 0.16–1.55%, respectively.

Suggested Citation

  • Xu, Ziqiang & Li, Cheng & Mu, Lianbo & Wang, Suilin & Lu, Junhui & Lan, Yuncheng, 2024. "Leakage detection method of underground heating pipeline based on improved wavelet threshold function," Energy, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224008235
    DOI: 10.1016/j.energy.2024.131051
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224008235
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:295:y:2024:i:c:s0360544224008235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.