IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics0360544224004080.html
   My bibliography  Save this article

Optimal configurations of ammonia decomposition reactor with minimum power consumption and minimum heat transfer rate

Author

Listed:
  • Huang, Jialuo
  • Xia, Shaojun
  • Chen, Lingen

Abstract

Ammonia decomposition reactor is an important component in process of ammonia hydrogen energy conversion technology where ammonia is the storage and transportation medium for hydrogen. In this research, a tubular ammonia decomposition reactor is modeled according to finite-time thermodynamics. With a fixed hydrogen yield, heat transfer rate and power consumption are taken as optimization targets, and the corresponding optimal temperature distributions outside the tube, that is, the optimal configurations, are obtained through a nonlinear programming method. In addition, the optimized reactor is also analyzed for three parameters: reactant initial temperature, reactant initial pressure, and reaction tube length. The results indicate that heat transfer rate of the optimal reactor with the minimum heat transfer rate and power consumption of the optimal reactor with the minimum power consumption are reduced by 10.5% and 17.26% compared to the reference reactor, respectively. The optimum parameters of the reactor are obtained as a tube length of 8 m, reactant inlet temperature of 450 K, and reactant inlet pressure of 8 bar. The findings of this research are instructive towards the optimal design and operation of ammonia decomposition reactors.

Suggested Citation

  • Huang, Jialuo & Xia, Shaojun & Chen, Lingen, 2024. "Optimal configurations of ammonia decomposition reactor with minimum power consumption and minimum heat transfer rate," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004080
    DOI: 10.1016/j.energy.2024.130636
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224004080
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130636?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.