IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics0360544224004018.html
   My bibliography  Save this article

Preparation and thermal properties of palmitic acid/copper foam phase change materials

Author

Listed:
  • Huo, Ying-Jie
  • Yan, Ting
  • Wu, Shao-Fei
  • Kuai, Zi-Han
  • Pan, Wei-Guo

Abstract

Phase change materials (PCMs) are promising options of thermal energy storage mediums. However, their low thermal conductivity and leakage issues remain the setback and limits the practical applications. In this work, Palmitic acid (PA)/copper foam (CF) composite PCMs have been prepared using the melting-vacuum impregnation method, with PA serving as the phase change material (PCM) and CF as the supporting material. The surface of CF with pore sizes of 15, 20, 25, 30 and 35 PPI (pores per inch) has been chemically modified with hydrochloric acid to increase the surface roughness of CF, strengthening the adsorption capacity of CF skeleton structure for PCM. The melting temperature and the latent heat of PA/CF composite PCMs were measured by differential scanning calorimeter (DSC) to evaluate the heat storage performance. The charging/discharging properties of the PA/CF composite PCMs have been experimentally investigated. At the same time, the solidification process of PA/CF composite PCMs was tested and analysed using infrared imaging technology. The introduction of CF to form composite PCM not only improves greatly the thermal conductivity of PCM but also prevents the leakage. The thermal conductivities of PA/CF composites have obtained a significant enhancement. The composite PCM based on 15 PPI CF has the highest thermal conductivity of 5.112 W/(m∙K), which is more than 31 times higher than that of pure PA. The 15 PPI sample melts at 61.4 °C with a latent heat of 174.788 kJ/kg and possesses the fastest charging/discharging rate. Besides, the prepared samples behave uniform temperature distribution and perfect shape-stabilization when cooled. The prepared samples have the high thermal conductivity and fast thermal response rate, and could play a crucial role in the field of heat storage and thermal management of electronic devices.

Suggested Citation

  • Huo, Ying-Jie & Yan, Ting & Wu, Shao-Fei & Kuai, Zi-Han & Pan, Wei-Guo, 2024. "Preparation and thermal properties of palmitic acid/copper foam phase change materials," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004018
    DOI: 10.1016/j.energy.2024.130629
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224004018
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130629?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.