IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224003578.html
   My bibliography  Save this article

A switching gain adaptive sliding mode observer for SoC estimation of lithium-ion battery

Author

Listed:
  • Qian, Wei
  • Li, Wan
  • Guo, Xiangwei
  • Wang, Haoyu

Abstract

A new state of charge (SoC) estimation method for lithium-ion battery that uses a Switching Gain Adaptive Sliding Mode Observer (SGASMO) is proposed. The purpose of SGASMO is to reduce the chattering of estimated results from the sliding mode observers (SMOs) and improve the estimation accuracy. First, the Dual Polarization (DP) equivalent circuit model is selected and its parameters are identified to provide a basis for the design of the new SMO. Second, based on the DP model, the nonlinear terminal sliding surface and continuous control law were introduced. And an improved switching gain equation was designed, which is adaptively adjusted according to the sliding mode surface equation. Thus, the SGASMO was realized, and the convergence of the proposed observer was proved by the Lyapunov stability theory. Finally, based on the test data of the self-built experimental platform, it is verified that the proposed SGASMO has less jitter in the estimated results and better estimation accuracy and robustness compared with the conventional SMOs and other types of mainstream improved SMOs.

Suggested Citation

  • Qian, Wei & Li, Wan & Guo, Xiangwei & Wang, Haoyu, 2024. "A switching gain adaptive sliding mode observer for SoC estimation of lithium-ion battery," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003578
    DOI: 10.1016/j.energy.2024.130585
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224003578
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130585?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Qiao & Ye, Min & Wei, Meng & Lian, Gaoqi & Li, Yan, 2023. "Deep convolutional neural network based closed-loop SOC estimation for lithium-ion batteries in hierarchical scenarios," Energy, Elsevier, vol. 263(PB).
    2. Sun, Daoming & Yu, Xiaoli & Wang, Chongming & Zhang, Cheng & Huang, Rui & Zhou, Quan & Amietszajew, Taz & Bhagat, Rohit, 2021. "State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator," Energy, Elsevier, vol. 214(C).
    3. Chen, Liping & Wu, Xiaobo & Lopes, António M. & Yin, Lisheng & Li, Penghua, 2022. "Adaptive state-of-charge estimation of lithium-ion batteries based on square-root unscented Kalman filter," Energy, Elsevier, vol. 252(C).
    4. Zuo, Hongyan & Zhang, Bin & Huang, Zhonghua & Wei, Kexiang & Zhu, Hong & Tan, Jiqiu, 2022. "Effect analysis on SOC values of the power lithium manganate battery during discharging process and its intelligent estimation," Energy, Elsevier, vol. 238(PB).
    5. Xiao, Renxin & Hu, Yanwen & Jia, Xianguang & Chen, Guisheng, 2022. "A novel estimation of state of charge for the lithium-ion battery in electric vehicle without open circuit voltage experiment," Energy, Elsevier, vol. 243(C).
    6. Ning, Bo & Cao, Binggang & Wang, Bin & Zou, Zhongyue, 2018. "Adaptive sliding mode observers for lithium-ion battery state estimation based on parameters identified online," Energy, Elsevier, vol. 153(C), pages 732-742.
    7. Yigeng Huangfu & Jiani Xu & Dongdong Zhao & Yuntian Liu & Fei Gao, 2018. "A Novel Battery State of Charge Estimation Method Based on a Super-Twisting Sliding Mode Observer," Energies, MDPI, vol. 11(5), pages 1-21, May.
    8. Xiong, Rui & Yu, Quanqing & Wang, Le Yi & Lin, Cheng, 2017. "A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter," Applied Energy, Elsevier, vol. 207(C), pages 346-353.
    9. Chen, Lin & Yu, Wentao & Cheng, Guoyang & Wang, Jierui, 2023. "State-of-charge estimation of lithium-ion batteries based on fractional-order modeling and adaptive square-root cubature Kalman filter," Energy, Elsevier, vol. 271(C).
    10. He, Lin & Wang, Yangyang & Wei, Yujiang & Wang, Mingwei & Hu, Xiaosong & Shi, Qin, 2022. "An adaptive central difference Kalman filter approach for state of charge estimation by fractional order model of lithium-ion battery," Energy, Elsevier, vol. 244(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Da Li & Lu Liu & Chuanxu Yue & Xiaojin Gao & Yunhai Zhu, 2025. "Real-Time Estimation of the State of Charge of Lithium Batteries Under a Wide Temperature Range," Energies, MDPI, vol. 18(7), pages 1-19, April.
    2. Zou, Yuanru & Shi, Haotian & Cao, Wen & Wang, Shunli & Nie, Shiliang & Chen, Dan, 2025. "A high-speed recurrent state network with noise reduction for multi-temperature state of energy estimation of electric vehicles lithium-ion batteries," Energy, Elsevier, vol. 322(C).
    3. Vahid Behnamgol & Mohammad Asadi & Mohamed A. A. Mohamed & Sumeet S. Aphale & Mona Faraji Niri, 2024. "Comprehensive Review of Lithium-Ion Battery State of Charge Estimation by Sliding Mode Observers," Energies, MDPI, vol. 17(22), pages 1-39, November.
    4. Wang, Xiaoxuan & Yi, Yingmin & Yuan, Yiwei & Li, Xifei, 2025. "Enhanced state of charge estimation in lithium-ion batteries based on Time-Frequency-Net with time-domain and frequency-domain features," Energy, Elsevier, vol. 318(C).
    5. Zeng, Jiawei & Wang, Shunli & Cao, Wen & Zhou, Yifei & Fernandez, Carlos & Guerrero, Josep M., 2024. "Battery asynchronous fractional-order thermoelectric coupling modeling and state of charge estimation based on frequency characteristic separation at low temperatures," Energy, Elsevier, vol. 307(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shu, Xiong & Li, Yongjing & Wei, Kexiang & Yang, Wenxian & Yang, Bowen & Zhang, Ming, 2025. "Research on the output characteristics and SOC estimation method of lithium-ion batteries over a wide range of operating temperature conditions," Energy, Elsevier, vol. 317(C).
    2. Zhu, Yunlong & Dong, Zhe & Cheng, Zhonghua & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Neural network extended state-observer for energy system monitoring," Energy, Elsevier, vol. 263(PA).
    3. He, Lin & Hu, Xingwen & Yin, Guangwei & Wang, Guoqiang & Shao, Xingguo & Liu, Jichao, 2024. "A current dynamics model and proportional–integral observer for state-of-charge estimation of lithium-ion battery," Energy, Elsevier, vol. 288(C).
    4. Peng, Simin & Zhang, Daohan & Dai, Guohong & Wang, Lin & Jiang, Yuxia & Zhou, Feng, 2025. "State of charge estimation for LiFePO4 batteries joint by PID observer and improved EKF in various OCV ranges," Applied Energy, Elsevier, vol. 377(PA).
    5. Chen, Lin & Yu, Wentao & Cheng, Guoyang & Wang, Jierui, 2023. "State-of-charge estimation of lithium-ion batteries based on fractional-order modeling and adaptive square-root cubature Kalman filter," Energy, Elsevier, vol. 271(C).
    6. Zhao, Zhihui & Kou, Farong & Pan, Zhengniu & Chen, Leiming & Yang, Tianxiang, 2024. "Ultra-high-accuracy state-of-charge fusion estimation of lithium-ion batteries using variational mode decomposition," Energy, Elsevier, vol. 309(C).
    7. Fan, Kesen & Wan, Yiming & Wang, Zhuo & Jiang, Kai, 2023. "Time-efficient identification of lithium-ion battery temperature-dependent OCV-SOC curve using multi-output Gaussian process," Energy, Elsevier, vol. 268(C).
    8. Zhan, Mingjing & Wu, Baigong & Xu, Guoqi & Li, Wenjuan & Liang, Darong & Zhang, Xiao, 2023. "Application of adaptive extended Kalman algorithm based on strong tracking fading factor in Stat-of-Charge estimation of lithium-ion battery," Energy, Elsevier, vol. 284(C).
    9. Tian, Yong & Huang, Zhijia & Tian, Jindong & Li, Xiaoyu, 2022. "State of charge estimation of lithium-ion batteries based on cubature Kalman filters with different matrix decomposition strategies," Energy, Elsevier, vol. 238(PC).
    10. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    11. Wan, Sicheng & Yang, Haojing & Lin, Jinwen & Li, Junhui & Wang, Yibo & Chen, Xinman, 2024. "Improved whale optimization algorithm towards precise state-of-charge estimation of lithium-ion batteries via optimizing LSTM," Energy, Elsevier, vol. 310(C).
    12. Simone Barcellona & Lorenzo Codecasa & Silvia Colnago & Luigi Piegari, 2023. "Calendar Aging Effect on the Open Circuit Voltage of Lithium-Ion Battery," Energies, MDPI, vol. 16(13), pages 1-16, June.
    13. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    14. Li, Feng & Zuo, Wei & Zhou, Kun & Li, Qingqing & Huang, Yuhan & Zhang, Guangde, 2024. "State-of-charge estimation of lithium-ion battery based on second order resistor-capacitance circuit-PSO-TCN model," Energy, Elsevier, vol. 289(C).
    15. Duan, Linchao & Zhang, Xugang & Jiang, Zhigang & Gong, Qingshan & Wang, Yan & Ao, Xiuyi, 2023. "State of charge estimation of lithium-ion batteries based on second-order adaptive extended Kalman filter with correspondence analysis," Energy, Elsevier, vol. 280(C).
    16. Li, Renzheng & Wang, Hui & Dai, Haifeng & Hong, Jichao & Tong, Guangyao & Chen, Xinbo, 2022. "Accurate state of charge prediction for real-world battery systems using a novel dual-dropout-based neural network," Energy, Elsevier, vol. 250(C).
    17. Wang, Chao & Wang, Xin & Yang, Mingjian & Li, Jiale & Qian, Feng & Zhang, Zunhua & Zhou, Mengni & Guo, Xiaofeng & Wang, Kai, 2025. "Concurrent estimation of lithium-ion battery charge and energy states by fractional-order model and multi-innovation adaptive cubature Kalman filter," Energy, Elsevier, vol. 322(C).
    18. Zhang, Chengzhong & Zhao, Hongyu & Xu, Yangyang & Li, Shengjia & Liao, Chenglin & Wang, Liye & Wang, Lifang, 2025. "State of charge accurate estimation of lithium-ion batteries based on augmenting observation dimension estimator over wide temperature range," Energy, Elsevier, vol. 316(C).
    19. Hu, Lipeng & Tang, Jinjun & Xu, Fuqiao & Liang, Xiao, 2025. "SOC prediction for electric buses based on interpretable transformer model: Impact of traffic conditions and feature importance," Energy, Elsevier, vol. 324(C).
    20. Siyi Tao & Bo Jiang & Xuezhe Wei & Haifeng Dai, 2023. "A Systematic and Comparative Study of Distinct Recurrent Neural Networks for Lithium-Ion Battery State-of-Charge Estimation in Electric Vehicles," Energies, MDPI, vol. 16(4), pages 1-17, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.