IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v289y2024ics0360544223033625.html
   My bibliography  Save this article

A new defrosting model for microchannel heat exchanger heat pump system considering the effects of drainage and water retention

Author

Listed:
  • Xiong, Tong
  • Chen, Qi
  • Xu, Shijie
  • Liu, Guoqiang
  • Gao, Qiang
  • Yan, Gang

Abstract

Microchannel heat exchangers (MCHX) have been widely used in heat pump systems due to their advantages of higher efficiency and lower refrigerant charge. However, when the MCHX heat pump system works under defrosting conditions, there are problems of poor defrosting performance and long defrosting time. To study the transient characteristics of the MCHX heat pump system during defrosting, a new defrosting model was developed. The defrosting process was divided into five stages based on the variation characteristics of the frost thickness and the water film. The drainage stage was first proposed in the defrosting model to consider the influence of melted frost. In addition, the impact of retained water was also assessed in the dry heating stage. The deviation of the model and experimental data is within the acceptable range, and the transient characteristics can be accurately predicted. The visualization of the frost melt showed that defrosting was an uneven process from the top down, and the frost layer was almost completely melted at 250 s. In this study, indoor air supplied the most energy at 68.8 %. Furthermore, melting frost consumed the largest amount of energy at 33.7 %, and heating ambient air consumed the second largest amount of energy at 29.1 %. Metal energy storage (MES) had a negative impact of −7.5 % on defrosting efficiency due to a large amount of energy required to heat MCHX. Moreover, the negative influence of frost melt water and retained water on defrosting efficiency was −9.5 % and −1.9 %, respectively. It can be concluded that the key measure to improve the defrosting performance of MCHX is to reduce the effect of melted frost. This work can provide helpful insights into the defrosting simulation model development of MCHX and guide defrosting strategy optimization.

Suggested Citation

  • Xiong, Tong & Chen, Qi & Xu, Shijie & Liu, Guoqiang & Gao, Qiang & Yan, Gang, 2024. "A new defrosting model for microchannel heat exchanger heat pump system considering the effects of drainage and water retention," Energy, Elsevier, vol. 289(C).
  • Handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033625
    DOI: 10.1016/j.energy.2023.129968
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223033625
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129968?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:289:y:2024:i:c:s0360544223033625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.