IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223033005.html
   My bibliography  Save this article

Uncertainty quantification of reservoir performance using machine learning algorithms and structured expert judgment

Author

Listed:
  • Fathy, Mohammad
  • Kazemzadeh Haghighi, Foojan
  • Ahmadi, Mohammad

Abstract

The increasing demand for fossil energy necessitates forecasting of reservoir performance and informed decision-making under various production scenarios. Although reservoir models are used to make such forecasts, neglecting geological uncertainties and history matching can limit the understanding of reservoir production behavior. While performing reservoir simulation on multiple models for uncertainty quantification is a direct approach, it is associated with significant time and computational costs and low convergence rates. This study proposes a method to address these limitations using Bayes' theorem integrated with Machine Learning (ML) algorithms, sampling methods (Markov Chain Monte Carlo and rejection), and Structured Expert Judgment (SEJ) based on the Cooke's Model (CM). The tuned ANN model outperforms traditional simulation methods in terms of computational cost when predicting posterior probability distributions, while also displaying high accuracy as confirmed by R2-score and k-fold cross-validation analyses. Furthermore, using trained ANN models in conjunction with representative samples drawn from posterior probability distributions enables the rigorous prediction of reservoir production parameters. Finally, the CM is implemented to generate a robust model by combining the statistical quantiles, including P10–P25–P50–P75–P90 estimations obtained from MCMC and rejection sampling. The applicability of this methodology is demonstrated for Teal South reservoir with eight uncertain parameters.

Suggested Citation

  • Fathy, Mohammad & Kazemzadeh Haghighi, Foojan & Ahmadi, Mohammad, 2024. "Uncertainty quantification of reservoir performance using machine learning algorithms and structured expert judgment," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223033005
    DOI: 10.1016/j.energy.2023.129906
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223033005
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129906?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hussain, Jamal & Zhou, Kui & Muhammad, Faqir & Khan, Danish & Khan, Anwar & Ali, Najabat & Akhtar, Rizwan, 2021. "Renewable energy investment and governance in countries along the belt & Road Initiative: Does trade openness matter?," Renewable Energy, Elsevier, vol. 180(C), pages 1278-1289.
    2. Luis Alejandro Arias & Edwin Rivas & Francisco Santamaria & Victor Hernandez, 2018. "A Review and Analysis of Trends Related to Demand Response," Energies, MDPI, vol. 11(7), pages 1-24, June.
    3. Willy Aspinall, 2010. "A route to more tractable expert advice," Nature, Nature, vol. 463(7279), pages 294-295, January.
    4. Colson, Abigail R. & Cooke, Roger M., 2017. "Cross validation for the classical model of structured expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 109-120.
    5. Seungpil Jung & Kyungbook Lee & Changhyup Park & Jonggeun Choe, 2018. "Ensemble-Based Data Assimilation in Reservoir Characterization: A Review," Energies, MDPI, vol. 11(2), pages 1-23, February.
    6. Appiah-Otoo, Isaac & Chen, Xudong & Ampah, Jeffrey Dankwa, 2023. "Does financial structure affect renewable energy consumption? Evidence from G20 countries," Energy, Elsevier, vol. 272(C).
    7. Robert T. Clemen & Robert L. Winkler, 1999. "Combining Probability Distributions From Experts in Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 19(2), pages 187-203, April.
    8. Zhou, Yuhao & Wang, Yanwei, 2022. "An integrated framework based on deep learning algorithm for optimizing thermochemical production in heavy oil reservoirs," Energy, Elsevier, vol. 253(C).
    9. Nguyen-Le, Viet & Shin, Hyundon, 2022. "Artificial neural network prediction models for Montney shale gas production profile based on reservoir and fracture network parameters," Energy, Elsevier, vol. 244(PB).
    10. Cooke, Roger M. & Marti, Deniz & Mazzuchi, Thomas, 2021. "Expert forecasting with and without uncertainty quantification and weighting: What do the data say?," International Journal of Forecasting, Elsevier, vol. 37(1), pages 378-387.
    11. Wang, Yanji & Li, Hangyu & Xu, Jianchun & Liu, Shuyang & Wang, Xiaopu, 2022. "Machine learning assisted relative permeability upscaling for uncertainty quantification," Energy, Elsevier, vol. 245(C).
    12. Michael Oppenheimer & Christopher M. Little & Roger M. Cooke, 2016. "Expert judgement and uncertainty quantification for climate change," Nature Climate Change, Nature, vol. 6(5), pages 445-451, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Xin & Nane, Gabriela F. & Terwel, Karel C. & van Gelder, Pieter H.A.J.M., 2024. "Measuring the impacts of human and organizational factors on human errors in the Dutch construction industry using structured expert judgement," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    2. Brian H. MacGillivray, 2019. "Null Hypothesis Testing ≠ Scientific Inference: A Critique of the Shaky Premise at the Heart of the Science and Values Debate, and a Defense of Value‐Neutral Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 39(7), pages 1520-1532, July.
    3. Anca M. Hanea & Marissa F. McBride & Mark A. Burgman & Bonnie C. Wintle, 2018. "The Value of Performance Weights and Discussion in Aggregated Expert Judgments," Risk Analysis, John Wiley & Sons, vol. 38(9), pages 1781-1794, September.
    4. Eric Libby & Leon Glass, 2010. "The Calculus of Committee Composition," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-8, September.
    5. David V. Budescu & Eva Chen, 2015. "Identifying Expertise to Extract the Wisdom of Crowds," Management Science, INFORMS, vol. 61(2), pages 267-280, February.
    6. Fergus Bolger & Gene Rowe, 2015. "The Aggregation of Expert Judgment: Do Good Things Come to Those Who Weight?," Risk Analysis, John Wiley & Sons, vol. 35(1), pages 5-11, January.
    7. Timothy McDaniels, 2021. "Four Decades of Transformation in Decision Analytic Practice for Societal Risk Management," Risk Analysis, John Wiley & Sons, vol. 41(3), pages 491-502, March.
    8. Patrick Afflerbach & Christopher Dun & Henner Gimpel & Dominik Parak & Johannes Seyfried, 2021. "A Simulation-Based Approach to Understanding the Wisdom of Crowds Phenomenon in Aggregating Expert Judgment," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(4), pages 329-348, August.
    9. Jeremy Rohmer & Eric Chojnacki, 2021. "Forecast of environment systems using expert judgements: performance comparison between the possibilistic and the classical model," Environment Systems and Decisions, Springer, vol. 41(1), pages 131-146, March.
    10. Hanea, Anca & Wilkinson, David Peter & McBride, Marissa & Lyon, Aidan & van Ravenzwaaij, Don & Singleton Thorn, Felix & Gray, Charles T. & Mandel, David R. & Willcox, Aaron & Gould, Elliot, 2021. "Mathematically aggregating experts' predictions of possible futures," MetaArXiv rxmh7, Center for Open Science.
    11. A. Procter & T. McDaniels & R. Vignola, 2017. "Using expert judgments to inform economic evaluation of ecosystem-based adaptation decisions: watershed management for enhancing water supply for Tegucigalpa, Honduras," Environment Systems and Decisions, Springer, vol. 37(4), pages 410-422, December.
    12. Roger M. Cooke, 2023. "Averaging quantiles, variance shrinkage, and overconfidence," Futures & Foresight Science, John Wiley & Sons, vol. 5(1), March.
    13. Julia R. Falconer & Eibe Frank & Devon L. L. Polaschek & Chaitanya Joshi, 2022. "Methods for Eliciting Informative Prior Distributions: A Critical Review," Decision Analysis, INFORMS, vol. 19(3), pages 189-204, September.
    14. Alexander M. R. Bakker & Domitille Louchard & Klaus Keller, 2017. "Sources and implications of deep uncertainties surrounding sea-level projections," Climatic Change, Springer, vol. 140(3), pages 339-347, February.
    15. Despoina Makariou & Pauline Barrieu & George Tzougas, 2021. "A Finite Mixture Modelling Perspective for Combining Experts’ Opinions with an Application to Quantile-Based Risk Measures," Risks, MDPI, vol. 9(6), pages 1-25, June.
    16. Abigail R Colson & Roger M Cooke, 2018. "Expert Elicitation: Using the Classical Model to Validate Experts’ Judgments," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 113-132.
    17. Abigail R Colson & Itamar Megiddo & Gerardo Alvarez-Uria & Sumanth Gandra & Tim Bedford & Alec Morton & Roger M Cooke & Ramanan Laxminarayan, 2019. "Quantifying uncertainty about future antimicrobial resistance: Comparing structured expert judgment and statistical forecasting methods," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-18, July.
    18. Avner Engel & Shalom Shachar, 2006. "Measuring and optimizing systems' quality costs and project duration," Systems Engineering, John Wiley & Sons, vol. 9(3), pages 259-280, September.
    19. Tony E. Wong & Alexander M. R. Bakker & Klaus Keller, 2017. "Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense," Climatic Change, Springer, vol. 144(2), pages 347-364, September.
    20. Franz Dietrich & Christian List, 2017. "Probabilistic opinion pooling generalized. Part one: general agendas," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(4), pages 747-786, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223033005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.