IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v287y2024ics036054422302964x.html
   My bibliography  Save this article

Investigating the influence of outdoor temperature variations on fire-induced smoke behavior in an atrium-type underground metro station using hybrid ventilation systems

Author

Listed:
  • Xu, Desheng
  • Li, Yanfeng
  • Du, Tianmei
  • Zhong, Hua
  • Huang, Youbo
  • Li, Lei
  • Xiangling, Duanmu

Abstract

Underground metro systems are expanding rapidly worldwide, necessitating research on energy-efficient ventilation systems, fire safety, and smoke control. This study investigates the optimisation of hybrid mechanical-natural ventilation for smoke control in complex metro stations. Full-scale winter/summer experiments and numerical simulations examined a double-deck atrium-type station. Results demonstrate the atrium fires are more significantly impacted by outdoor temperature variations versus concourse/platform fires, with a 70 K versus 30 K temperature rise above the fire respectively. The heat of the gathered high-temperature smoke inside the atrium can reach up to 900 K under a 5 MW train fire energy release. The dimensionless Archimedes number (Ar) defines the ratio of thermal buoyancy to gravitational forces. Cold exterior winter air (Ar<1) entering via the atrium ceiling openings restricted vertical smoke diffusion, enabling enhanced lateral propagation. With rising outdoor temperatures from −20 °C to 10 °C (Ar<1), the natural smoke extraction efficiency increased from 0 to 18 %, coupled with vertical airflow velocities accelerating from −3.5 m/s to 1.5 m/s. When outdoor temperatures were between 10 °C and 40 °C (Ar>1), airflow velocity only changed slightly. Empirical models predict internal temperature profiles as a function of external meteorology. The findings provide crucial engineering insights into integrating weather data and adaptable ventilation protocols for scenario-based smoke prevention/mitigation. Further work should examine seasonal variations beyond the tested -20‒40 °C range. Overall, considering outdoor climate effects allows 30 % optimisation of hybrid ventilation systems for fire safety in underground metro stations. This study promotes technological advances in energy-efficient transport infrastructure resilience.

Suggested Citation

  • Xu, Desheng & Li, Yanfeng & Du, Tianmei & Zhong, Hua & Huang, Youbo & Li, Lei & Xiangling, Duanmu, 2024. "Investigating the influence of outdoor temperature variations on fire-induced smoke behavior in an atrium-type underground metro station using hybrid ventilation systems," Energy, Elsevier, vol. 287(C).
  • Handle: RePEc:eee:energy:v:287:y:2024:i:c:s036054422302964x
    DOI: 10.1016/j.energy.2023.129570
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422302964X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129570?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:287:y:2024:i:c:s036054422302964x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.