IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v285y2023ics0360544223019072.html
   My bibliography  Save this article

Optimal cooperative cyber–physical attack strategy against gas–electricity interconnected system

Author

Listed:
  • Huang, Chongxin
  • Fu, Shuai
  • Hong, Minglei
  • Deng, Song

Abstract

In the context of the in-depth integration of the cyber system and the physical system, cooperative cyber–physical attacks (CCPAs) pose an increasing threat to the security and economy of the integrated energy system (IES). In this article, considering a gas–electricity interconnected IES, a new bi-level programming model is formulated to study the impact of the CCPA strategies on the economy of the IES. At the upper level, from the attacker’s perspective, an attack decision model is built to maximize the operational expenditure of the IES subject to the attack resource constraints. At the lower level, from the dispatcher’s perspective, an optimal scheduling model is established to minimize the operation cost in the case of the IES suffering from the CCPAs. Since the bi-level programming model is mixed-integer, nonlinear, and non-convex, a joint solution method (PSO+Yalmip+Cplex) is proposed to compute the optimal CCPA strategies. The impacts of the CCPA strategies on the economic dispatch (ED) of the IES are evaluated via numerical simulations.

Suggested Citation

  • Huang, Chongxin & Fu, Shuai & Hong, Minglei & Deng, Song, 2023. "Optimal cooperative cyber–physical attack strategy against gas–electricity interconnected system," Energy, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223019072
    DOI: 10.1016/j.energy.2023.128513
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223019072
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128513?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:285:y:2023:i:c:s0360544223019072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.