IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223025161.html
   My bibliography  Save this article

Experimental study on improving cold start performance of diesel engines at extremely low ambient temperatures with diethyl ether

Author

Listed:
  • Sun, Hao
  • Zhang, Wugao
  • Wang, Yixuan

Abstract

How to achieve a fast and reliable cold start of diesel engines at extremely low temperatures is a significant and longstanding problem. In this study, a precise amount of diethyl ether was premixed in the intake to facilitate the starting at extremely low ambient temperatures down to −40 °C. The study investigated the effects of diesel fuel injection strategies, diethyl ether concentration, and ambient temperature on the cold-start performance. Additionally, an analysis was conducted on energy consumption and heat loss during the cold start period. The test engine could start quickly and steadily when diethyl ether was premixed in the intake. This was achieved by optimizing the diesel injection quantity to 60% of the original quantity and retarding the injection timing from 6 oCA BTDC to 2 oCA BTDC. The engine exhibited reliable starting at −40 °C when 2.0% v/v diethyl ether was premixed. However, excessive direct injection of diesel had an adverse effect on fuel ignition at such extremely low temperatures. Moreover, the electricity consumption was much lower with diethyl ether premixed in the intake than that with an electric intake heater, greatly reducing the requirements for starting batteries during the cold start under extremely low-temperature conditions.

Suggested Citation

  • Sun, Hao & Zhang, Wugao & Wang, Yixuan, 2023. "Experimental study on improving cold start performance of diesel engines at extremely low ambient temperatures with diethyl ether," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025161
    DOI: 10.1016/j.energy.2023.129122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223025161
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.