IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v282y2023ics0360544223018273.html
   My bibliography  Save this article

Extending ultra-lean burn performance of high compression ratio pre-chamber jet ignition engines based on injection strategy and optimized structure

Author

Listed:
  • Wang, Bin
  • Xie, Fangxi
  • Hong, Wei
  • Du, Jiakun
  • Chen, Hong
  • Li, Xiaoping

Abstract

The pre-chamber jet ignition technology significantly enhances the thermal efficiency and lean burn limit of the engine. In this study, a single-cylinder pre-chamber engine is subjected to a performance limit test. Through optimization of the pre-chamber fuel injection strategy, enhancement of the pre-chamber nozzle structure, and implementation of adiabatic piston technology, the gross indicated thermal efficiency of the spark ignition gasoline engine has successfully exceeded 51%, and the lean burn limit has been extended to lambda values greater than 3.1. For the selection of pre-chamber injection parameters, high injection pressure, minimal enrichment, and injection timing in the middle of the compression stroke are found to achieve both high fuel economy and lean burn performance. Moreover, the orientation of the pre-chamber nozzle has a significant impact on the lean burn performance of the engine, with the nozzle aiming at the top of the piston and avoiding pointing towards the cylinder wall. Under the conditions of high compression ratio and ultra-lean burn, the jet ignition followed by end-mixture gas auto-ignition results in a double-peak heat release process. Additionally, adiabatic piston technology shows potential in expanding the lean burn limit of engines while simultaneously mitigating HC emissions and engine heat transfer losses.

Suggested Citation

  • Wang, Bin & Xie, Fangxi & Hong, Wei & Du, Jiakun & Chen, Hong & Li, Xiaoping, 2023. "Extending ultra-lean burn performance of high compression ratio pre-chamber jet ignition engines based on injection strategy and optimized structure," Energy, Elsevier, vol. 282(C).
  • Handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223018273
    DOI: 10.1016/j.energy.2023.128433
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223018273
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.128433?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manzetti, Sergio & Mariasiu, Florin, 2015. "Electric vehicle battery technologies: From present state to future systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1004-1012.
    2. Ju, Dehao & Huang, Zhong & Li, Xiang & Zhang, Tingting & Cai, Weiwei, 2020. "Comparison of open chamber and pre-chamber ignition of methane/air mixtures in a large bore constant volume chamber: Effect of excess air ratio and pre-mixed pressure," Applied Energy, Elsevier, vol. 260(C).
    3. Koegl, M. & Hofbeck, B. & Will, S. & Zigan, L., 2018. "Investigation of soot formation and oxidation of ethanol and butanol fuel blends in a DISI engine at different exhaust gas recirculation rates," Applied Energy, Elsevier, vol. 209(C), pages 426-434.
    4. Sun, Xilei & Fu, Jianqin & Yang, Huiyong & Xie, Mingke & Liu, Jingping, 2023. "An energy management strategy for plug-in hybrid electric vehicles based on deep learning and improved model predictive control," Energy, Elsevier, vol. 269(C).
    5. Wei, Haiqiao & Zhang, Ren & Chen, Lin & Pan, Jiaying & Wang, Xuan, 2021. "Effects of high ignition energy on lean combustion characteristics of natural gas using an optical engine with a high compression ratio," Energy, Elsevier, vol. 223(C).
    6. Zhao, Deyang & An, Yanzhao & Pei, Yiqiang & Shi, Hao & Wang, Kun, 2023. "Numerical study on the asymmetrical jets formation from active pre-chamber under super-lean combustion conditions," Energy, Elsevier, vol. 262(PA).
    7. Song, Jingeun & Kim, Taehoon & Jang, Jihwan & Park, Sungwook, 2015. "Effects of the injection strategy on the mixture formation and combustion characteristics in a DISI (direct injection spark ignition) optical engine," Energy, Elsevier, vol. 93(P2), pages 1758-1768.
    8. Hua, Jianxiong & Song, Yuntong & Zhou, Lei & Liu, Fengnian & Wei, Haiqiao, 2021. "Operation strategy optimization of lean combustion using turbulent jet ignition at different engine loads," Applied Energy, Elsevier, vol. 302(C).
    9. Wang, Chongming & Xu, Hongming & Herreros, Jose Martin & Wang, Jianxin & Cracknell, Roger, 2014. "Impact of fuel and injection system on particle emissions from a GDI engine," Applied Energy, Elsevier, vol. 132(C), pages 178-191.
    10. Deng, Banglin & Li, Qing & Chen, Yangyang & Li, Meng & Liu, Aodong & Ran, Jiaqi & Xu, Ying & Liu, Xiaoqiang & Fu, Jianqin & Feng, Renhua, 2019. "The effect of air/fuel ratio on the CO and NOx emissions for a twin-spark motorcycle gasoline engine under wide range of operating conditions," Energy, Elsevier, vol. 169(C), pages 1202-1213.
    11. Duan, Xiongbo & Liu, Jingping & Yao, Jun & Chen, Zheng & Wu, Cheng & Chen, Ceyuan & Dong, Hao, 2018. "Performance, combustion and knock assessment of a high compression ratio and lean-burn heavy-duty spark-ignition engine fuelled with n-butane and liquefied methane gas blend," Energy, Elsevier, vol. 158(C), pages 256-268.
    12. Onofrio, Gessica & Napolitano, Pierpaolo & Tunestål, Per & Beatrice, Carlo, 2021. "Combustion sensitivity to the nozzle hole size in an active pre-chamber ultra-lean heavy-duty natural gas engine," Energy, Elsevier, vol. 235(C).
    13. Palmer, Kate & Tate, James E. & Wadud, Zia & Nellthorp, John, 2018. "Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan," Applied Energy, Elsevier, vol. 209(C), pages 108-119.
    14. Li, Tie & Yin, Tao & Wang, Bin, 2017. "Anatomy of the cooled EGR effects on soot emission reduction in boosted spark-ignited direct-injection engines," Applied Energy, Elsevier, vol. 190(C), pages 43-56.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Xiaojun & Sun, Nannan & Sun, Ting & Shen, Hongguang & Mehra, Roopesh Kumar & Liu, Junlong & Wang, Ying & Yang, Bo & Zeng, Ke, 2022. "Experimental investigation the effects of spark discharge characteristics on the heavy-duty spark ignition natural gas engine at low load condition," Energy, Elsevier, vol. 239(PC).
    2. Wu, Shaohua & Zhou, Dezhi & Yang, Wenming, 2019. "Implementation of an efficient method of moments for treatment of soot formation and oxidation processes in three-dimensional engine simulations," Applied Energy, Elsevier, vol. 254(C).
    3. Sun, Yao & Yu, Xiumin & Dong, Wei & Chen, Hong & Hu, Yunfeng, 2018. "Effect of split injection on particle number (PN) emissions in GDI engine at fast-idle through integrated analysis of optics and mechanics," Energy, Elsevier, vol. 165(PB), pages 55-67.
    4. Mohsin Raza & Longfei Chen & Felix Leach & Shiting Ding, 2018. "A Review of Particulate Number (PN) Emissions from Gasoline Direct Injection (GDI) Engines and Their Control Techniques," Energies, MDPI, vol. 11(6), pages 1-26, June.
    5. Hu, Junnan & Pei, Yiqiang & An, Yanzhao & Zhao, Deyang & Zhang, Zhiyong & Sun, Jian & Gao, Dingwei, 2023. "Study of active pre-chamber jet flames based on the synergy of airflow with different nozzle swirl angle," Energy, Elsevier, vol. 282(C).
    6. Xiaoli Sun & Zhengguo Li & Xiaolin Wang & Chengjiang Li, 2019. "Technology Development of Electric Vehicles: A Review," Energies, MDPI, vol. 13(1), pages 1-29, December.
    7. Costa, M. & Catapano, F. & Sementa, P. & Sorge, U. & Vaglieco, B.M., 2016. "Mixture preparation and combustion in a GDI engine under stoichiometric or lean charge: an experimental and numerical study on an optically accessible engine," Applied Energy, Elsevier, vol. 180(C), pages 86-103.
    8. Costa, M. & Sorge, U. & Merola, S. & Irimescu, A. & La Villetta, M. & Rocco, V., 2016. "Split injection in a homogeneous stratified gasoline direct injection engine for high combustion efficiency and low pollutants emission," Energy, Elsevier, vol. 117(P2), pages 405-415.
    9. Balali, Yasaman & Stegen, Sascha, 2021. "Review of energy storage systems for vehicles based on technology, environmental impacts, and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    10. Qian, Yong & Li, Zilong & Yu, Liang & Wang, Xiaole & Lu, Xingcai, 2019. "Review of the state-of-the-art of particulate matter emissions from modern gasoline fueled engines," Applied Energy, Elsevier, vol. 238(C), pages 1269-1298.
    11. Robert J.R. Elliott & Viet Nguyen-Tien & Eric Strobl & Chengyu Zhang, 2024. "Estimating the longevity of electric vehicles: What do 300 million MOT test results tell us?," CEP Discussion Papers dp1972, Centre for Economic Performance, LSE.
    12. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Das, Choton K. & Baniasadi, Ali, 2020. "A novel photovoltaic-pumped hydro storage microgrid applicable to rural areas," Applied Energy, Elsevier, vol. 262(C).
    13. Benajes, J. & Novella, R. & Gomez-Soriano, J. & Martinez-Hernandiz, P.J. & Libert, C. & Dabiri, M., 2019. "Evaluation of the passive pre-chamber ignition concept for future high compression ratio turbocharged spark-ignition engines," Applied Energy, Elsevier, vol. 248(C), pages 576-588.
    14. Felix Hinnüber & Marek Szarucki & Katarzyna Szopik-Depczyńska, 2019. "The Effects of a First-Time Experience on the Evaluation of Battery Electric Vehicles by Potential Consumers," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    15. Jacobus Nel & Roula Inglesi-Lotz, 2022. "Electric Vehicles Market and Policy Conditions: Identifying South African Policy ``Potholes"," Working Papers 202257, University of Pretoria, Department of Economics.
    16. Jiang, Chenxu & Li, Zilong & Qian, Yong & Wang, Xiaole & Zhang, Yahui & Lu, Xingcai, 2018. "Influences of fuel injection strategies on combustion performance and regular/irregular emissions in a turbocharged gasoline direct injection engine: Commercial gasoline versus multi-components gasoli," Energy, Elsevier, vol. 157(C), pages 173-187.
    17. Hyoung Jun Kim & Su Jung Jee & So Young Sohn, 2021. "Cost–benefit model for multi-generational high-technology products to compare sequential innovation strategy with quality strategy," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-17, April.
    18. Nie, Qingyun & Zhang, Lihui & Tong, Zihao & Dai, Guyu & Chai, Jianxue, 2022. "Cost compensation method for PEVs participating in dynamic economic dispatch based on carbon trading mechanism," Energy, Elsevier, vol. 239(PA).
    19. Shi, Lei & Ji, Changwei & Wang, Shuofeng & Su, Teng & Cong, Xiaoyu & Wang, Du & Tang, Chuanqi, 2019. "Effects of second injection timing on combustion characteristics of the spark ignition direct injection gasoline engines with dimethyl ether enrichment in the intake port," Energy, Elsevier, vol. 180(C), pages 10-18.
    20. Haugen, Molly J. & Paoli, Leonardo & Cullen, Jonathan & Cebon, David & Boies, Adam M., 2021. "A fork in the road: Which energy pathway offers the greatest energy efficiency and CO2 reduction potential for low-carbon vehicles?," Applied Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223018273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.