IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v278y2023ics0360544223010083.html
   My bibliography  Save this article

Effect of alkali and alkaline earth metals on the liquefaction of lignocellulosic model compounds to prepare bio-oil in ethanol solvent

Author

Listed:
  • Du, Chongzhen
  • Yang, Tianhua
  • Li, Bingshuo
  • Cao, He
  • Liu, Zheng
  • Huang, Shengzhao

Abstract

In this paper, glucose, xylan and lignin were selected as typical components of lignocellulosic biomass to conduct liquefaction experiments, and the effect of alkali and alkaline earth metals (AAEMs) on biomass liquefaction in ethanol was investigated. Alkaline earth metals (AEMs) had a positive catalytic effect on the yield and quality of xylan liquefied bio-oil, in particular, MgCl2 increased the yield of bio-oil from 26.6 wt% to 38.8 wt%. AAEMs inhibited the formation of glucose and lignin bio-oil, the yield of bio-oil was changed from lignin > glucose > xylan to lignin > xylan > glucose. AAEMs increased the content of ester compounds in bio-oil, inhibited the formation of long-chain aliphatic compounds, and promoted the transformation of macromolecular aromatic compounds into coke. The active catalytic sites of AAEMs were gradually covered by the adsorption of residues and carbon free radicals, blocking the active sites. The ability of carbon free radical to capture H source was weakened, and the transfer of active hydrogen to bio-oil was inhibited, which was not conducive to the improvement of higher heating value (HHV) of bio-oil.

Suggested Citation

  • Du, Chongzhen & Yang, Tianhua & Li, Bingshuo & Cao, He & Liu, Zheng & Huang, Shengzhao, 2023. "Effect of alkali and alkaline earth metals on the liquefaction of lignocellulosic model compounds to prepare bio-oil in ethanol solvent," Energy, Elsevier, vol. 278(C).
  • Handle: RePEc:eee:energy:v:278:y:2023:i:c:s0360544223010083
    DOI: 10.1016/j.energy.2023.127614
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223010083
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.127614?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Bingshuo & Liu, Yixuan & Yang, Tianhua & Feng, Bixuan & Kai, Xingping & Wang, Shurong & Li, Rundong, 2021. "Aqueous phase reforming of biocrude derived from lignocellulose hydrothermal liquefaction: Conditions optimization and mechanism study," Renewable Energy, Elsevier, vol. 175(C), pages 98-107.
    2. Xu, Donghai & Wang, Yang & Lin, Guike & Guo, Shuwei & Wang, Shuzhong & Wu, Zhiqiang, 2019. "Co-hydrothermal liquefaction of microalgae and sewage sludge in subcritical water: Ash effects on bio-oil production," Renewable Energy, Elsevier, vol. 138(C), pages 1143-1151.
    3. Li, Wei-Gang & Zhao, Wei & Liu, Hao-Miao & Ao, Lei & Liu, Kai-Shuai & Guan, Yin-Shuang & Zai, Shi-Feng & Chen, Shang-Long & Zong, Zhi-Min & Wei, Xian-Yong, 2018. "Supercritical ethanolysis of wheat stalk over calcium oxide," Renewable Energy, Elsevier, vol. 120(C), pages 300-305.
    4. Chen, Xiye & Liu, Li & Zhang, Linyao & Zhao, Yan & Xing, Chang & Jiao, Zixin & Yang, Chunhui & Qiu, Penghua, 2021. "Effect of active alkali and alkaline earth metals on physicochemical properties and gasification reactivity of co-pyrolysis char from coal blended with corn stalks," Renewable Energy, Elsevier, vol. 171(C), pages 1213-1223.
    5. Huang, Neng & Zhao, Peitao & Ghosh, Sudip & Fedyukhin, Alexander, 2019. "Co-hydrothermal carbonization of polyvinyl chloride and moist biomass to remove chlorine and inorganics for clean fuel production," Applied Energy, Elsevier, vol. 240(C), pages 882-892.
    6. Wu, Xiao-Fei & Yin, Shuang-Shuang & Zhou, Qian & Li, Ming-Fei & Peng, Feng & Xiao, Xiao, 2019. "Subcritical liquefaction of lignocellulose for the production of bio-oils in ethanol/water system," Renewable Energy, Elsevier, vol. 136(C), pages 865-872.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Tianhua & Du, Chongzhen & Li, Bingshuo & Liu, Zheng & Kai, Xingping, 2022. "Influence of alkali and alkaline earth metals on the hydrothermal liquefaction of lignocellulosic model compounds," Renewable Energy, Elsevier, vol. 188(C), pages 1038-1048.
    2. Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammed & Thaher, Mahmoud Ibrahim & Hawari, Alaa H. & Alshamri, Noora & AlGhasal, Ghamza & Al-Jabri, Hareb M.J., 2023. "Biocrude oil production from a self-settling marine cyanobacterium, Chroococcidiopsis sp., using a biorefinery approach," Renewable Energy, Elsevier, vol. 203(C), pages 1-9.
    3. Sharma, Nishesh & Jaiswal, Krishna Kumar & Kumar, Vinod & Vlaskin, Mikhail S. & Nanda, Manisha & Rautela, Indra & Tomar, Mahipal Singh & Ahmad, Waseem, 2021. "Effect of catalyst and temperature on the quality and productivity of HTL bio-oil from microalgae: A review," Renewable Energy, Elsevier, vol. 174(C), pages 810-822.
    4. Yao, Zhongliang & Ma, Xiaoqian & Xiao, Zhiyuan, 2020. "The effect of two pretreatment levels on the pyrolysis characteristics of water hyacinth," Renewable Energy, Elsevier, vol. 151(C), pages 514-527.
    5. Jiao, Zixin & Qiu, Penghua & Chen, Xiye & Liu, Li & Zhang, Linyao & Xing, Chang, 2023. "Effects of volatiles and active AAEMs interaction with char on char characteristics during co-pyrolysis," Renewable Energy, Elsevier, vol. 208(C), pages 618-626.
    6. Eunhye Song & Ho Kim & Kyung Woo Kim & Young-Man Yoon, 2023. "Characteristic Evaluation of Different Carbonization Processes for Hydrochar, Torrefied Char, and Biochar Produced from Cattle Manure," Energies, MDPI, vol. 16(7), pages 1-14, April.
    7. Biswas, Bijoy & Arun Kumar, Aishwarya & Bisht, Yashasvi & Krishna, Bhavya B. & Kumar, Jitendra & Bhaskar, Thallada, 2021. "Role of temperatures and solvents on hydrothermal liquefaction of Azolla filiculoides," Energy, Elsevier, vol. 217(C).
    8. Wei, Yingyuan & Fakudze, Sandile & Zhang, Yiming & Ma, Ru & Shang, Qianqian & Chen, Jianqiang & Liu, Chengguo & Chu, Qiulu, 2022. "Co-hydrothermal carbonization of pomelo peel and PVC for production of hydrochar pellets with enhanced fuel properties and dechlorination," Energy, Elsevier, vol. 239(PD).
    9. Cheng, Chen & Ding, Lu & Guo, Qinghua & He, Qing & Gong, Yan & Alexander, Kozlov N. & Yu, Guangsuo, 2022. "Process analysis and kinetic modeling of coconut shell hydrothermal carbonization," Applied Energy, Elsevier, vol. 315(C).
    10. Yang, Fangming & Liu, Xin & Li, Mengbin & Uguna, Clement & Wang, Wenlong & Sun, Chenggong, 2023. "Polyvinyl chloride (PVC) derived microporous carbons prepared via hydrothermal dechlorination and potassium hydroxide activation for efficient CO2 capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    11. Shulun Han & Li Bai & Mingshu Chi & Xiuling Xu & Zhao Chen & Kecheng Yu, 2022. "Conversion of Waste Corn Straw to Value-Added Fuel via Hydrothermal Carbonization after Acid Washing," Energies, MDPI, vol. 15(5), pages 1-14, March.
    12. Guanyu Zhang & Kejie Wang & Quan Liu & Lujia Han & Xuesong Zhang, 2022. "A Comprehensive Hydrothermal Co-Liquefaction of Diverse Biowastes for Energy-Dense Biocrude Production: Synergistic and Antagonistic Effects," IJERPH, MDPI, vol. 19(17), pages 1-17, August.
    13. Liu, Quan & Zhang, Guanyu & Kong, Ge & Liu, Mingyang & Cao, Tianqi & Guo, Zhirui & Zhang, Xuesong & Han, Lujia, 2023. "Valorizing manure waste into green coal-like hydrochar: Parameters study, physicochemical characteristics, combustion behaviors and kinetics," Renewable Energy, Elsevier, vol. 216(C).
    14. Kamaldeep Sharma & Ayaz A. Shah & Saqib S. Toor & Tahir H. Seehar & Thomas H. Pedersen & Lasse A. Rosendahl, 2021. "Co-Hydrothermal Liquefaction of Lignocellulosic Biomass in Supercritical Water," Energies, MDPI, vol. 14(6), pages 1-13, March.
    15. Wang, Haoyu & Han, Xue & Zeng, Yimin & Xu, Chunbao Charles, 2023. "Development of a global kinetic model based on chemical compositions of lignocellulosic biomass for predicting product yields from hydrothermal liquefaction," Renewable Energy, Elsevier, vol. 215(C).
    16. Ratha, Sachitra Kumar & Renuka, Nirmal & Abunama, Taher & Rawat, Ismail & Bux, Faizal, 2022. "Hydrothermal liquefaction of algal feedstocks: The effect of biomass characteristics and extraction solvents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    17. Zhao, Kaige & Li, Wanqing & Yu, Yingying & Chen, Guanyi & Yan, Beibei & Cheng, Zhanjun & Zhao, Hai & Fang, Yang, 2023. "Speciation and transformation of nitrogen in the hydrothermal liquefaction of wastewater-treated duckweed for the bio-oil production," Renewable Energy, Elsevier, vol. 204(C), pages 661-670.
    18. Qian, Lili & Wang, Shuzhong & Savage, Phillip E., 2020. "Fast and isothermal hydrothermal liquefaction of sludge at different severities: Reaction products, pathways, and kinetics," Applied Energy, Elsevier, vol. 260(C).
    19. Li, Qingyin & Yuan, Xiangzhou & Hu, Xun & Meers, Erik & Ong, Hwai Chyuan & Chen, Wei-Hsin & Duan, Peigao & Zhang, Shicheng & Lee, Ki Bong & Ok, Yong Sik, 2022. "Co-liquefaction of mixed biomass feedstocks for bio-oil production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    20. Ning, Xiaojun & Dang, Han & Xu, Runsheng & Wang, Guangwei & Zhang, Jianliang & Zhang, Nan & Wang, Chuan, 2022. "Co-hydrothermal carbonization of biomass and PVC for clean blast furnace injection fuel production: Experiment and DFT calculation," Renewable Energy, Elsevier, vol. 187(C), pages 156-168.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:278:y:2023:i:c:s0360544223010083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.