IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v270y2023ics0360544223003857.html
   My bibliography  Save this article

Airborne ultrasound catalyzed saltwater Al/Mg-air flow batteries

Author

Listed:
  • Huang, Huiyu
  • Liu, Pengzhan
  • Ma, Qiuxia
  • Tang, Zihao
  • Wang, Mu
  • Hu, Junhui

Abstract

In this work, we demonstrate an ultrasonic catalysis method for promoting the ORR rate and enhancing discharge performance of saltwater Al/Mg-air flow batteries, in which focused airborne ultrasound (FAU) is utilized. Experimental results show that compared with the batteries not sonicated, the percentage increase of peak power density of batteries catalyzed by FAU can reach 28.61% for the Al-air flow battery and 33.77% for the Mg-air flow one, respectively, when the ultrasonic frequency is 608.4 kHz. The measured optimal peak power densities are up to 18.9 mW cm−2 and 73.4 mW cm−2 for the Al/Mg-air flow batteries catalyzed by FAU, respectively, when the electric catalysts loaded with Pt/C are employed for the cathode. Our numerical simulation indicates that the sound pressure and acoustic streaming on the cathode surface may enhance the oxygen diffusion. To the best of our knowledge, this is the first attempt to utilize the gas-borne ultrasonic catalysis effect to promote the ORR of metal-air flow batteries.

Suggested Citation

  • Huang, Huiyu & Liu, Pengzhan & Ma, Qiuxia & Tang, Zihao & Wang, Mu & Hu, Junhui, 2023. "Airborne ultrasound catalyzed saltwater Al/Mg-air flow batteries," Energy, Elsevier, vol. 270(C).
  • Handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223003857
    DOI: 10.1016/j.energy.2023.126991
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223003857
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126991?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olabi, Abdul Ghani & Abbas, Qaisar & Al Makky, Ahmed & Abdelkareem, Mohammad Ali, 2022. "Supercapacitors as next generation energy storage devices: Properties and applications," Energy, Elsevier, vol. 248(C).
    2. Miao, He & Wang, Zhouhang & Wang, Qin & Sun, Shanshan & Xue, Yejian & Wang, Fu & Zhao, Jiapei & Liu, Zhaoping & Yuan, Jinliang, 2018. "A new family of Mn-based perovskite (La1-xYxMnO3) with improved oxygen electrocatalytic activity for metal-air batteries," Energy, Elsevier, vol. 154(C), pages 561-570.
    3. Chen, Binbin & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2017. "A mixed-pH dual-electrolyte microfluidic aluminum–air cell with high performance," Applied Energy, Elsevier, vol. 185(P2), pages 1303-1308.
    4. Fan, Zhaohui & Fu, Yijie & Liang, Hong & Gao, Renjing & Liu, Shutian, 2023. "A module-level charging optimization method of lithium-ion battery considering temperature gradient effect of liquid cooling and charging time," Energy, Elsevier, vol. 265(C).
    5. Wei, Manhui & Wang, Keliang & Zuo, Yayu & Wang, Hengwei & Zhao, Siyuan & Zhang, Pengfei & Zhang, Songmao & Shui, Youfu & Pei, Pucheng & Chen, Junfeng, 2023. "Inner Zn layer and outer glutamic acid film as efficient dual-protective interface of Al anode in Al-air fuel cell," Energy, Elsevier, vol. 267(C).
    6. Iranzo, A. & Arredondo, C.H. & Kannan, A.M. & Rosa, F., 2020. "Biomimetic flow fields for proton exchange membrane fuel cells: A review of design trends," Energy, Elsevier, vol. 190(C).
    7. Liu, Xuan & Xue, Jilai, 2019. "The role of Al2Gd cuboids in the discharge performance and electrochemical behaviors of AZ31-Gd anode for Mg-air batteries," Energy, Elsevier, vol. 189(C).
    8. Pan, Lyuming & Chen, Dongfang & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "A novel structural design of air cathodes expanding three-phase reaction interfaces for zinc-air batteries," Applied Energy, Elsevier, vol. 290(C).
    9. Yang, H.N. & Lee, W.H. & Choi, B.S. & Ko, Y.D. & Yi, S.C. & Kim, W.J., 2017. "Self-humidifying Pt-C/Pt-TiO2 dual-catalyst electrode membrane assembly for proton-exchange membrane fuel cells," Energy, Elsevier, vol. 120(C), pages 12-19.
    10. Sangeetha, Thangavel & Chen, Po-Tuan & Yan, Wei-Mon & Huang, K. David, 2020. "Enhancement of air-flow management in Zn-air fuel cells by the optimization of air-flow parameters," Energy, Elsevier, vol. 197(C).
    11. Lin, Rui & Wang, Hong & Zhu, Yu, 2021. "Optimizing the structural design of cathode catalyst layer for PEM fuel cells for improving mass-specific power density," Energy, Elsevier, vol. 221(C).
    12. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    13. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    14. Tan, P. & Jiang, H.R. & Zhu, X.B. & An, L. & Jung, C.Y. & Wu, M.C. & Shi, L. & Shyy, W. & Zhao, T.S., 2017. "Advances and challenges in lithium-air batteries," Applied Energy, Elsevier, vol. 204(C), pages 780-806.
    15. Chang, Chun & Wu, Yutong & Jiang, Jiuchun & Jiang, Yan & Tian, Aina & Li, Taiyu & Gao, Yang, 2022. "Prognostics of the state of health for lithium-ion battery packs in energy storage applications," Energy, Elsevier, vol. 239(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    2. Wei, Manhui & Wang, Keliang & Pei, Pucheng & Zhong, Liping & Züttel, Andreas & Pham, Thi Ha My & Shang, Nuo & Zuo, Yayu & Wang, Hengwei & Zhao, Siyuan, 2023. "Zinc carboxylate optimization strategy for extending Al-air battery system's lifetime," Applied Energy, Elsevier, vol. 350(C).
    3. Olabi, Abdul Ghani & Abbas, Qaisar & Shinde, Pragati A. & Abdelkareem, Mohammad Ali, 2023. "Rechargeable batteries: Technological advancement, challenges, current and emerging applications," Energy, Elsevier, vol. 266(C).
    4. Ouyang, Tiancheng & Lu, Jie & Zhao, Zhongkai & Chen, Jingxian & Xu, Peihang, 2021. "New insight on the mechanism of vibration effects in vapor-feed microfluidic fuel cell," Energy, Elsevier, vol. 225(C).
    5. Wang, Yifei & Kwok, Holly Y.H. & Pan, Wending & Zhang, Huimin & Lu, Xu & Leung, Dennis Y.C., 2019. "Parametric study and optimization of a low-cost paper-based Al-air battery with corrosion inhibition ability," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Rewatkar, Prakash & Goel, Sanket, 2021. "Catalyst-mitigated arrayed aluminum-air origami fuel cell with ink-jet printed custom-porosity cathode," Energy, Elsevier, vol. 224(C).
    7. Tan, Peng & Chen, Bin & Xu, Haoran & Cai, Weizi & He, Wei & Ni, Meng, 2019. "Porous Co3O4 nanoplates as the active material for rechargeable Zn-air batteries with high energy efficiency and cycling stability," Energy, Elsevier, vol. 166(C), pages 1241-1248.
    8. Chen, Long Xiang & Xie, Mei Na & Zhao, Pan Pan & Wang, Feng Xiang & Hu, Peng & Wang, Dong Xiang, 2018. "A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid," Applied Energy, Elsevier, vol. 210(C), pages 198-210.
    9. Dae-Seon Hong & Yeon-Ji Choi & Chang-Su Jin & Kyoung-Hee Shin & Woo-Jin Song & Sun-Hwa Yeon, 2023. "Enhanced Cycle Performance of NiCo 2 O 4 /CNTs Composites in Lithium-Air Batteries," Energies, MDPI, vol. 17(1), pages 1-14, December.
    10. Huang, Qisheng & Xu, Yunjian & Courcoubetis, Costas, 2020. "Stackelberg competition between merchant and regulated storage investment in wholesale electricity markets," Applied Energy, Elsevier, vol. 264(C).
    11. Wang, Bin & Wang, Shifeng & Tang, Yuanyuan & Tsang, Chi-Wing & Dai, Jinchuan & Leung, Michael K.H. & Lu, Xiao-Ying, 2019. "Micro/nanostructured MnCo2O4.5 anodes with high reversible capacity and excellent rate capability for next generation lithium-ion batteries," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    12. Wang, Yubao & Huang, Xiaozhou & Huang, Zhendong, 2024. "Energy-related uncertainty and Chinese stock market returns," Finance Research Letters, Elsevier, vol. 62(PB).
    13. Chen, Xuejun & Yang, Yongming & Cui, Zhixin & Shen, Jun, 2019. "Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy," Energy, Elsevier, vol. 174(C), pages 1100-1109.
    14. Parnian, Mohammad Javad & Rowshanzamir, Soosan & Gashoul, Fatemeh, 2017. "Comprehensive investigation of physicochemical and electrochemical properties of sulfonated poly (ether ether ketone) membranes with different degrees of sulfonation for proton exchange membrane fuel ," Energy, Elsevier, vol. 125(C), pages 614-628.
    15. Muhammad Habib Ur Rehman & Luigi Coppola & Ernestino Lufrano & Isabella Nicotera & Cataldo Simari, 2023. "Enhancing Water Retention, Transport, and Conductivity Performance in Fuel Cell Applications: Nafion-Based Nanocomposite Membranes with Organomodified Graphene Oxide Nanoplatelets," Energies, MDPI, vol. 16(23), pages 1-11, November.
    16. Pin Li & Jinsuo Zhang, 2019. "Is China’s Energy Supply Sustainable? New Research Model Based on the Exponential Smoothing and GM(1,1) Methods," Energies, MDPI, vol. 12(2), pages 1-30, January.
    17. Sung-Fu Hung & Aoni Xu & Xue Wang & Fengwang Li & Shao-Hui Hsu & Yuhang Li & Joshua Wicks & Eduardo González Cervantes & Armin Sedighian Rasouli & Yuguang C. Li & Mingchuan Luo & Dae-Hyun Nam & Ning W, 2022. "A metal-supported single-atom catalytic site enables carbon dioxide hydrogenation," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    18. Zheng, Bobo & Xu, Jiuping & Ni, Ting & Li, Meihui, 2015. "Geothermal energy utilization trends from a technological paradigm perspective," Renewable Energy, Elsevier, vol. 77(C), pages 430-441.
    19. Liao, Shuxin & Qiu, Diankai & Yi, Peiyun & Peng, Linfa & Lai, Xinmin, 2022. "Modeling of a novel cathode flow field design with optimized sub-channels to improve drainage for proton exchange membrane fuel cells," Energy, Elsevier, vol. 261(PB).
    20. Mao, Guozhu & Zou, Hongyang & Chen, Guanyi & Du, Huibin & Zuo, Jian, 2015. "Past, current and future of biomass energy research: A bibliometric analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1823-1833.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:270:y:2023:i:c:s0360544223003857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.