IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v267y2023ics0360544222034934.html
   My bibliography  Save this article

A two-stage eco-cooling control strategy for electric vehicle thermal management system considering multi-source information fusion

Author

Listed:
  • Zhao, Yihang
  • Dan, Dan
  • Zheng, Siyu
  • Wei, Mingshan
  • Xie, Yi

Abstract

Thermal management systems (TMS) of electric vehicles (EV) have a significant impact on cabin thermal comfort and battery life, and few studies have adequately considered it. This study proposes a two-stage eco-cooling (TSEC) control strategy to reduce TMS energy consumption while improving cabin thermal comfort and extending battery life. Multi-source information, such as vehicle speed, weather conditions, passenger characteristics, and battery conditions, are all considered. In the first stage, the passenger characteristics and battery conditions are used to calculate the cabin comfort temperature and the battery's optimal operating temperature, respectively. The dynamic programming (DP) algorithm is used to optimize cabin and battery temperature trajectories. Fuzzy PID-based controllers are used in the second stage to achieve the desired temperature. The air conditioning (AC)-cabin thermal model and the battery thermal-electro-aging model have been developed and validated. The proposed TSEC control strategy can improve cabin thermal comfort by automatically adjusting the calculated comfort temperature. Compared with the on-off and PID controllers, the battery life under the TSEC control strategy is improved by 21.48% and 8.55%, respectively, and the energy consumption is reduced by 42.86% and 18.54%, respectively. The proposed control strategy may provide new insight into the TMS of electric vehicles.

Suggested Citation

  • Zhao, Yihang & Dan, Dan & Zheng, Siyu & Wei, Mingshan & Xie, Yi, 2023. "A two-stage eco-cooling control strategy for electric vehicle thermal management system considering multi-source information fusion," Energy, Elsevier, vol. 267(C).
  • Handle: RePEc:eee:energy:v:267:y:2023:i:c:s0360544222034934
    DOI: 10.1016/j.energy.2022.126606
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222034934
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126606?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pengyu Lu & Qing Gao & Liang Lv & Xiaoye Xue & Yan Wang, 2019. "Numerical Calculation Method of Model Predictive Control for Integrated Vehicle Thermal Management Based on Underhood Coupling Thermal Transmission," Energies, MDPI, vol. 12(2), pages 1-27, January.
    2. Akula, Rajesh & Balaji, C., 2022. "Thermal management of 18650 Li-ion battery using novel fins–PCM–EG composite heat sinks," Applied Energy, Elsevier, vol. 316(C).
    3. Huang, Xianghui & Li, Kuining & Xie, Yi & Liu, Bin & Liu, Jiangyan & Liu, Zhaoming & Mou, Lunjie, 2022. "A novel multistage constant compressor speed control strategy of electric vehicle air conditioning system based on genetic algorithm," Energy, Elsevier, vol. 241(C).
    4. Lander, Laura & Kallitsis, Evangelos & Hales, Alastair & Edge, Jacqueline Sophie & Korre, Anna & Offer, Gregory, 2021. "Cost and carbon footprint reduction of electric vehicle lithium-ion batteries through efficient thermal management," Applied Energy, Elsevier, vol. 289(C).
    5. Ren, Ruyang & Zhao, Yaohua & Diao, Yanhua & Liang, Lin, 2022. "Experimental study on preheating thermal management system for lithium-ion battery based on U-shaped micro heat pipe array," Energy, Elsevier, vol. 253(C).
    6. Ma, Yan & Ding, Hao & Liu, Yongqin & Gao, Jinwu, 2022. "Battery thermal management of intelligent-connected electric vehicles at low temperature based on NMPC," Energy, Elsevier, vol. 244(PA).
    7. Huang, Yanjun & Khajepour, Amir & Bagheri, Farshid & Bahrami, Majid, 2016. "Optimal energy-efficient predictive controllers in automotive air-conditioning/refrigeration systems," Applied Energy, Elsevier, vol. 184(C), pages 605-618.
    8. Wan, Taocheng & Bai, Yan & Wang, Tingxiang & Wei, Zhuo, 2022. "BPNN-based optimal strategy for dynamic energy optimization with providing proper thermal comfort under the different outdoor air temperatures," Applied Energy, Elsevier, vol. 313(C).
    9. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng Li & Siyu Zheng & Mingshan Wei, 2023. "Flow Loss Analysis and Structural Optimization of Multiway Valves for Integrated Thermal Management Systems in Electric Vehicles," Energies, MDPI, vol. 16(13), pages 1-22, June.
    2. Jixian Sun & Dan Dan & Mingshan Wei & Senlin Cai & Yihang Zhao & Edward Wright, 2023. "Pack-Level Modeling and Thermal Analysis of a Battery Thermal Management System with Phase Change Materials and Liquid Cooling," Energies, MDPI, vol. 16(15), pages 1-16, August.
    3. Dan Dan & Yihang Zhao & Mingshan Wei & Xuehui Wang, 2023. "Review of Thermal Management Technology for Electric Vehicles," Energies, MDPI, vol. 16(12), pages 1-38, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dan Dan & Yihang Zhao & Mingshan Wei & Xuehui Wang, 2023. "Review of Thermal Management Technology for Electric Vehicles," Energies, MDPI, vol. 16(12), pages 1-38, June.
    2. Picatoste, Aitor & Justel, Daniel & Mendoza, Joan Manuel F., 2022. "Circularity and life cycle environmental impact assessment of batteries for electric vehicles: Industrial challenges, best practices and research guidelines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    3. Shen, Yuxuan & Pan, Yue, 2023. "BIM-supported automatic energy performance analysis for green building design using explainable machine learning and multi-objective optimization," Applied Energy, Elsevier, vol. 333(C).
    4. Hao Sun & Bo Jiang & Heze You & Bojian Yang & Xueyuan Wang & Xuezhe Wei & Haifeng Dai, 2021. "Quantitative Analysis of Degradation Modes of Lithium-Ion Battery under Different Operating Conditions," Energies, MDPI, vol. 14(2), pages 1-19, January.
    5. Thorne, Rebecca Jayne & Hovi, Inger Beate & Figenbaum, Erik & Pinchasik, Daniel Ruben & Amundsen, Astrid Helene & Hagman, Rolf, 2021. "Facilitating adoption of electric buses through policy: Learnings from a trial in Norway," Energy Policy, Elsevier, vol. 155(C).
    6. Tan, R.R. & Aviso, K.B. & Ng, D.K.S., 2019. "Optimization models for financing innovations in green energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    7. Van-Tinh Huynh & Kyoungsik Chang & Sang-Wook Lee, 2023. "Numerical Investigation of the Thermal Performance of a Hybrid Phase Change Material and Forced Air Cooling System for a Three-Cell Lithium-Ion Battery Module," Energies, MDPI, vol. 16(24), pages 1-19, December.
    8. Mattia Ricco & Jinhao Meng & Tudor Gherman & Gabriele Grandi & Remus Teodorescu, 2019. "Smart Battery Pack for Electric Vehicles Based on Active Balancing with Wireless Communication Feedback," Energies, MDPI, vol. 12(20), pages 1-15, October.
    9. Qin, Yudi & Du, Jiuyu & Lu, Languang & Gao, Ming & Haase, Frank & Li, Jianqiu & Ouyang, Minggao, 2020. "A rapid lithium-ion battery heating method based on bidirectional pulsed current: Heating effect and impact on battery life," Applied Energy, Elsevier, vol. 280(C).
    10. Weina Qu & Hongli Sun & Yan Ge, 2021. "The effects of trait anxiety and the big five personality traits on self-driving car acceptance," Transportation, Springer, vol. 48(5), pages 2663-2679, October.
    11. Santos, María Emma, 2019. "Non-monetary indicators to monitor SDG targets 1.2 and 1.4: standards, availability, comparability and quality," Estudios Estadísticos 44452, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    12. Ma, Junhai & Hou, Yaming & Wang, Zongxian & Yang, Wenhui, 2021. "Pricing strategy and coordination of automobile manufacturers based on government intervention and carbon emission reduction," Energy Policy, Elsevier, vol. 148(PA).
    13. Johannes Morfeldt & Daniel J. A. Johansson, 2022. "Impacts of shared mobility on vehicle lifetimes and on the carbon footprint of electric vehicles," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Rahman, Syed & Khan, Irfan Ahmed & Khan, Ashraf Ali & Mallik, Ayan & Nadeem, Muhammad Faisal, 2022. "Comprehensive review & impact analysis of integrating projected electric vehicle charging load to the existing low voltage distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    15. Pedram Asef & Marzia Milan & Andrew Lapthorn & Sanjeevikumar Padmanaban, 2021. "Future Trends and Aging Analysis of Battery Energy Storage Systems for Electric Vehicles," Sustainability, MDPI, vol. 13(24), pages 1-28, December.
    16. Xiaohong Jiang & Xiucheng Guo, 2020. "Evaluation of Performance and Technological Characteristics of Battery Electric Logistics Vehicles: China as a Case Study," Energies, MDPI, vol. 13(10), pages 1-23, May.
    17. Huang, Yanjun & Khajepour, Amir & Ding, Haitao & Bagheri, Farshid & Bahrami, Majid, 2017. "An energy-saving set-point optimizer with a sliding mode controller for automotive air-conditioning/refrigeration systems," Applied Energy, Elsevier, vol. 188(C), pages 576-585.
    18. Chenhao Sun & Xiwei Jiang & Zhiwei Jia & Kun Yu & Sheng Xiang & Jianhong Su, 2023. "An Optimization Ensemble for Integrated Energy System Configuration Strategy Incorporating Demand–Supply Coordination," Sustainability, MDPI, vol. 15(21), pages 1-17, October.
    19. Li, Shen & Marzook, Mohamed Waseem & Zhang, Cheng & Offer, Gregory J. & Marinescu, Monica, 2023. "How to enable large format 4680 cylindrical lithium-ion batteries," Applied Energy, Elsevier, vol. 349(C).
    20. Christian Thiel & Anastasios Tsakalidis & Arnulf Jäger-Waldau, 2020. "Will Electric Vehicles Be Killed (again) or Are They the Next Mobility Killer App?," Energies, MDPI, vol. 13(7), pages 1-10, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:267:y:2023:i:c:s0360544222034934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.