IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v262y2023ipas0360544222023155.html
   My bibliography  Save this article

Adsorption characteristics and thermodynamic analysis of shale in northern Guizhou, China: Measurement, modeling and prediction

Author

Listed:
  • Gao, Zheng
  • Li, Bobo
  • Li, Jianhua
  • Jia, Lidan
  • Wang, Zhonghui

Abstract

The Lower Cambrian Niutitang Formation shale is the principal organic-rich shale formation in the northern Guizhou Province of China, which has great shale gas development prospects. In this study, the isothermal adsorption data from 26 shale samples from Niutitang Formation in northern Guizhou were obtained through the isothermal adsorption experiment of self-sampled specimens, along with published data. On this basis, we analyzed the control effects of temperature and physical parameters on adsorption capacity. An adsorption model with two new physical meaning parameters was constructed, and the accuracy of the model was validated. In addition, the isosteric enthalpy of adsorption in shale was further calculated, and the factors that affected the isosteric enthalpy were discussed. The results showed that the isosteric enthalpy decreased with an increase in temperature, and increased with an increase of TOC, but was controlled at a higher TOC. TOC-normalized heat revealed a more obvious segmental change rule for thermal maturity. Finally, we provided a new method to predict adsorption isotherms at other temperature conditions through the isosteric enthalpy of adsorption, and obtained better prediction results. This study provided a new insight for further understanding of shale adsorption characteristics from the perspective of thermodynamics.

Suggested Citation

  • Gao, Zheng & Li, Bobo & Li, Jianhua & Jia, Lidan & Wang, Zhonghui, 2023. "Adsorption characteristics and thermodynamic analysis of shale in northern Guizhou, China: Measurement, modeling and prediction," Energy, Elsevier, vol. 262(PA).
  • Handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222023155
    DOI: 10.1016/j.energy.2022.125433
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222023155
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125433?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Yuntian & Jiang, Su & Zhang, Dongxiao & Liu, Chaoyang, 2017. "An adsorbed gas estimation model for shale gas reservoirs via statistical learning," Applied Energy, Elsevier, vol. 197(C), pages 327-341.
    2. Xie, Weidong & Wang, Meng & Chen, Si & Vandeginste, Veerle & Yu, Zhenghong & Wang, Hua, 2022. "Effects of gas components, reservoir property and pore structure of shale gas reservoir on the competitive adsorption behavior of CO2 and CH4," Energy, Elsevier, vol. 254(PB).
    3. Jie Zou & Reza Rezaee, 2019. "A Prediction Model for Methane Adsorption Capacity in Shale Gas Reservoirs," Energies, MDPI, vol. 12(2), pages 1-13, January.
    4. Middleton, Richard S. & Gupta, Rajan & Hyman, Jeffrey D. & Viswanathan, Hari S., 2017. "The shale gas revolution: Barriers, sustainability, and emerging opportunities," Applied Energy, Elsevier, vol. 199(C), pages 88-95.
    5. Zhou, Junping & Tian, Shifeng & Zhou, Lei & Xian, Xuefu & Yang, Kang & Jiang, Yongdong & Zhang, Chengpeng & Guo, Yaowen, 2020. "Experimental investigation on the influence of sub- and super-critical CO2 saturation time on the permeability of fractured shale," Energy, Elsevier, vol. 191(C).
    6. Lin, Kui & Zhao, Ya-Pu, 2021. "Entropy and enthalpy changes during adsorption and displacement of shale gas," Energy, Elsevier, vol. 221(C).
    7. Yang, Xu & Zhou, Wenning & Liu, Xunliang & Yan, Yuying, 2020. "A multiscale approach for simulation of shale gas transport in organic nanopores," Energy, Elsevier, vol. 210(C).
    8. Qin, Chao & Jiang, Yongdong & Luo, Yahuang & Zhou, Junping & Liu, Hao & Song, Xiao & Li, Dong & Zhou, Feng & Xie, Yingliang, 2020. "Effect of supercritical CO2 saturation pressures and temperatures on the methane adsorption behaviours of Longmaxi shale," Energy, Elsevier, vol. 206(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shan, Baochao & Wang, Runxi & Guo, Zhaoli & Wang, Peng, 2021. "Contribution quantification of nanoscale gas transport in shale based on strongly inhomogeneous kinetic model," Energy, Elsevier, vol. 228(C).
    2. Qin, Chao & Jiang, Yongdong & Zuo, Shuangying & Chen, Shiwan & Xiao, Siyou & Liu, Zhengjie, 2021. "Investigation of adsorption kinetics of CH4 and CO2 on shale exposure to supercritical CO2," Energy, Elsevier, vol. 236(C).
    3. Jin, Xu & Wang, Xiaoqi & Yan, Weipeng & Meng, Siwei & Liu, Xiaodan & Jiao, Hang & Su, Ling & Zhu, Rukai & Liu, He & Li, Jianming, 2019. "Exploration and casting of large scale microscopic pathways for shale using electrodeposition," Applied Energy, Elsevier, vol. 247(C), pages 32-39.
    4. Qin, Lei & Wang, Ping & Lin, Haifei & Li, Shugang & Zhou, Bin & Bai, Yang & Yan, Dongjie & Ma, Chao, 2023. "Quantitative characterization of the pore volume fractal dimensions for three kinds of liquid nitrogen frozen coal and its enlightenment to coalbed methane exploitation," Energy, Elsevier, vol. 263(PA).
    5. Yang, Ruiyue & Hong, Chunyang & Huang, Zhongwei & Song, Xianzhi & Zhang, Shikun & Wen, Haitao, 2019. "Coal breakage using abrasive liquid nitrogen jet and its implications for coalbed methane recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Andres Soage & Ruben Juanes & Ignasi Colominas & Luis Cueto-Felgueroso, 2021. "The Impact of the Geometry of the Effective Propped Volume on the Economic Performance of Shale Gas Well Production," Energies, MDPI, vol. 14(9), pages 1-22, April.
    7. Li, Jing & Wu, Keliu & Chen, Zhangxin & Wang, Wenyang & Yang, Bin & Wang, Kun & Luo, Jia & Yu, Renjie, 2019. "Effects of energetic heterogeneity on gas adsorption and gas storage in geologic shale systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    8. Wang, Hui & Chen, Li & Qu, Zhiguo & Yin, Ying & Kang, Qinjun & Yu, Bo & Tao, Wen-Quan, 2020. "Modeling of multi-scale transport phenomena in shale gas production — A critical review," Applied Energy, Elsevier, vol. 262(C).
    9. Cao, Gaohui & Jiang, Wenbin & Lin, Mian & Ji, Lili & Xu, Zhipeng & Zheng, Siping & Hao, Fang, 2021. "Mortar dynamic coupled model for calculating interface gas exchange between organic and inorganic matters of shale," Energy, Elsevier, vol. 236(C).
    10. Xu, HengYu & Yu, Hao & Fan, JingCun & Xia, Jun & Liu, He & Wu, HengAn, 2022. "Formation mechanism and structural characteristic of pore-networks in shale kerogen during in-situ conversion process," Energy, Elsevier, vol. 242(C).
    11. Wu, Jian & Shen, Luming & Huang, Pengyu & Gan, Yixiang, 2023. "Selective adsorption and transport of CO2–CH4 mixture under nano-confinement," Energy, Elsevier, vol. 273(C).
    12. Xie, Weidong & Wang, Hua & Vandeginste, Veerle & Chen, Si & Gan, Huajun & Wang, Meng & Yu, Zhenghong, 2023. "Thermodynamic and kinetic affinity of CO2 relative to CH4 and their pressure, temperature and pore structure sensitivity in the competitive adsorption system in shale gas reservoirs," Energy, Elsevier, vol. 277(C).
    13. Yan, Min & Zhou, Ming & Li, Shugang & Lin, Haifei & Zhang, Kunyin & Zhang, Binbin & Shu, Chi-Min, 2021. "Numerical investigation on the influence of micropore structure characteristics on gas seepage in coal with lattice Boltzmann method," Energy, Elsevier, vol. 230(C).
    14. Shi, Wenrui & Zhang, Chaomo & Jiang, Shu & Liao, Yong & Shi, Yuanhui & Feng, Aiguo & Young, Steven, 2022. "Study on pressure-boosting stimulation technology in shale gas horizontal wells in the Fuling shale gas field," Energy, Elsevier, vol. 254(PB).
    15. Shi, Rui & Liu, Jishan & Wang, Xiaoming & Wei, Mingyao & Elsworth, Derek, 2021. "A critical analysis of shale laboratory permeability evolution data," Energy, Elsevier, vol. 236(C).
    16. Nguyen, Phong & Carey, J. William & Viswanathan, Hari S. & Porter, Mark, 2018. "Effectiveness of supercritical-CO2 and N2 huff-and-puff methods of enhanced oil recovery in shale fracture networks using microfluidic experiments," Applied Energy, Elsevier, vol. 230(C), pages 160-174.
    17. Mohamed Mehana & Fangxuan Chen & Mashhad Fahes & Qinjun Kang & Hari Viswanathan, 2022. "Geochemical Modelling of the Fracturing Fluid Transport in Shale Reservoirs," Energies, MDPI, vol. 15(22), pages 1-13, November.
    18. Zhang, Shuo & Song, Shengyuan & Zhang, Wen & Zhao, Jinmin & Cao, Dongfang & Ma, Wenliang & Chen, Zijian & Hu, Ying, 2023. "Research on the inherent mechanism of rock mass deformation of oil shale in-situ mining under the condition of thermal-fluid-solid coupling," Energy, Elsevier, vol. 280(C).
    19. An, Qiyi & Zhang, Qingsong & Li, Xianghui & Yu, Hao & Yin, Zhanchao & Zhang, Xiao, 2022. "Accounting for dynamic alteration effect of SC-CO2 to assess role of pore structure on rock strength: A comparative study," Energy, Elsevier, vol. 260(C).
    20. Qin, Chao & Jiang, Yongdong & Zhou, Junping & Zuo, Shuangying & Chen, Shiwan & Liu, Zhengjie & Yin, Hong & Li, Ye, 2022. "Influence of supercritical CO2 exposure on water wettability of shale: Implications for CO2 sequestration and shale gas recovery," Energy, Elsevier, vol. 242(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222023155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.