IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v262y2023ipas0360544222022551.html
   My bibliography  Save this article

A multi-objective optimization strategy for building carbon emission from the whole life cycle perspective

Author

Listed:
  • Chen, Ruijun
  • Tsay, Yaw-Shyan
  • Zhang, Ting

Abstract

This research proposed an integrated strategy for building performance optimization from the whole life cycle perspective to explore the optimal building scheme. After the feature elimination, the ensemble learning model (ELM) was trained to obtain a high-precision model for predicting life cycle carbon emissions (LCCE), life cycle costs (LCC), and indoor discomfort hours (IDH). Then, the optimal optimization algorithm was selected among three different optimization algorithms. Finally, the best building scheme was chosen according to the newly proposed solution. The results showed that the ELM could achieve high prediction efficiency by combining input feature evaluation and screening, multi-sampling methods, and hyperparameter optimization. The R2 value of ELM can reach 0.980, while the Two-Archive Evolutionary Algorithm for Constrained multi-objective optimization (C-TAEA) was the optimal optimization algorithm. The best equilibrium solution proposed in this study solved the problem of different optimization ranges of different objectives and maximized the optimization value. Finally, the best equilibrium scheme reduced the LCCE by 34.7%, the LCC by 13.9%, and the IDH by 26.6%. Therefore, this strategy can efficiently optimize building objectives and produce a more balanced and optimal building scheme, thus making it widely applicable in building performance optimization.

Suggested Citation

  • Chen, Ruijun & Tsay, Yaw-Shyan & Zhang, Ting, 2023. "A multi-objective optimization strategy for building carbon emission from the whole life cycle perspective," Energy, Elsevier, vol. 262(PA).
  • Handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222022551
    DOI: 10.1016/j.energy.2022.125373
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222022551
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125373?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bordbari, Mohammad Javad & Seifi, Ali Reza & Rastegar, Mohammad, 2018. "Probabilistic energy consumption analysis in buildings using point estimate method," Energy, Elsevier, vol. 142(C), pages 716-722.
    2. Zhang, Yelin & Zhang, Xingxing & Huang, Pei & Sun, Yongjun, 2020. "Global sensitivity analysis for key parameters identification of net-zero energy buildings for grid interaction optimization," Applied Energy, Elsevier, vol. 279(C).
    3. Zhang, Chaobo & Li, Junyang & Zhao, Yang & Li, Tingting & Chen, Qi & Zhang, Xuejun & Qiu, Weikang, 2021. "Problem of data imbalance in building energy load prediction: Concept, influence, and solution," Applied Energy, Elsevier, vol. 297(C).
    4. Razmi, Afshin & Rahbar, Morteza & Bemanian, Mohammadreza, 2022. "PCA-ANN integrated NSGA-III framework for dormitory building design optimization: Energy efficiency, daylight, and thermal comfort," Applied Energy, Elsevier, vol. 305(C).
    5. Zhai, Yingni & Wang, Yi & Huang, Yanqiu & Meng, Xiaojing, 2019. "A multi-objective optimization methodology for window design considering energy consumption, thermal environment and visual performance," Renewable Energy, Elsevier, vol. 134(C), pages 1190-1199.
    6. Krzysztof Grygierek & Joanna Ferdyn-Grygierek, 2018. "Multi-Objective Optimization of the Envelope of Building with Natural Ventilation," Energies, MDPI, vol. 11(6), pages 1-17, May.
    7. Chau, C.K. & Leung, T.M. & Ng, W.Y., 2015. "A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings," Applied Energy, Elsevier, vol. 143(C), pages 395-413.
    8. Zhixing Li & Mimi Tian & Yafei Zhao & Zhao Zhang & Yuxi Ying, 2021. "Development of an Integrated Performance Design Platform for Residential Buildings Based on Climate Adaptability," Energies, MDPI, vol. 14(24), pages 1-44, December.
    9. Harkouss, Fatima & Fardoun, Farouk & Biwole, Pascal Henry, 2018. "Passive design optimization of low energy buildings in different climates," Energy, Elsevier, vol. 165(PA), pages 591-613.
    10. García Kerdan, Iván & Morillón Gálvez, David, 2020. "Artificial neural network structure optimisation for accurately prediction of exergy, comfort and life cycle cost performance of a low energy building," Applied Energy, Elsevier, vol. 280(C).
    11. Park, Hyo Seon & Lee, Minhyun & Kang, Hyuna & Hong, Taehoon & Jeong, Jaewook, 2016. "Development of a new energy benchmark for improving the operational rating system of office buildings using various data-mining techniques," Applied Energy, Elsevier, vol. 173(C), pages 225-237.
    12. Ascione, Fabrizio & Bianco, Nicola & Maria Mauro, Gerardo & Napolitano, Davide Ferdinando, 2019. "Building envelope design: Multi-objective optimization to minimize energy consumption, global cost and thermal discomfort. Application to different Italian climatic zones," Energy, Elsevier, vol. 174(C), pages 359-374.
    13. Si, Binghui & Tian, Zhichao & Jin, Xing & Zhou, Xin & Shi, Xing, 2019. "Ineffectiveness of optimization algorithms in building energy optimization and possible causes," Renewable Energy, Elsevier, vol. 134(C), pages 1295-1306.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hechi Wang & Zerong Yan & Junxue Zhang & Hongying Wang & Zhaoyi Yan & Xinxin Chen & Xinyi He & Jianwei Ge & Qi Zhou, 2023. "A Study on Ecological Emergy and Carbon-Emissions-Coupling Sustainability of Building Systems," Sustainability, MDPI, vol. 15(17), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seyedeh Farzaneh Mousavi Motlagh & Ali Sohani & Mohammad Djavad Saghafi & Hoseyn Sayyaadi & Benedetto Nastasi, 2021. "The Road to Developing Economically Feasible Plans for Green, Comfortable and Energy Efficient Buildings," Energies, MDPI, vol. 14(3), pages 1-30, January.
    2. Rabani, Mehrdad & Bayera Madessa, Habtamu & Mohseni, Omid & Nord, Natasa, 2020. "Minimizing delivered energy and life cycle cost using Graphical script: An office building retrofitting case," Applied Energy, Elsevier, vol. 268(C).
    3. Meiyan Wang & Chen Chen & Bingxin Fan & Zilu Yin & Wenxuan Li & Huifang Wang & Fang’ai Chi, 2023. "Multi-Objective Optimization of Envelope Design of Rural Tourism Buildings in Southeastern Coastal Areas of China Based on NSGA-II Algorithm and Entropy-Based TOPSIS Method," Sustainability, MDPI, vol. 15(9), pages 1-27, April.
    4. Wu, Xianguo & Feng, Zongbao & Chen, Hongyu & Qin, Yawei & Zheng, Shiyi & Wang, Lei & Liu, Yang & Skibniewski, Miroslaw J., 2022. "Intelligent optimization framework of near zero energy consumption building performance based on a hybrid machine learning algorithm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Krzysztof Grygierek & Joanna Ferdyn-Grygierek & Anna Gumińska & Łukasz Baran & Magdalena Barwa & Kamila Czerw & Paulina Gowik & Klaudia Makselan & Klaudia Potyka & Agnes Psikuta, 2020. "Energy and Environmental Analysis of Single-Family Houses Located in Poland," Energies, MDPI, vol. 13(11), pages 1-25, May.
    6. Xabat Oregi & Rufino Javier Hernández & Patxi Hernandez, 2020. "Environmental and Economic Prioritization of Building Energy Refurbishment Strategies with Life-Cycle Approach," Sustainability, MDPI, vol. 12(9), pages 1-22, May.
    7. Frida Bazzocchi & Cecilia Ciacci & Vincenzo Di Naso, 2021. "Evaluation of Environmental and Economic Sustainability for the Building Envelope of Low-Carbon Schools," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    8. Scarpa, Federico & Tagliafico, Luca A. & Bianco, Vincenzo, 2021. "Financial and energy performance analysis of efficiency measures in residential buildings. A probabilistic approach," Energy, Elsevier, vol. 236(C).
    9. Shin, Bigyeong & Chang, Seong Jin & Wi, Seunghwan & Kim, Sumin, 2023. "Estimation of energy demand and greenhouse gas emission reduction effect of cross-laminated timber (CLT) hybrid wall using life cycle assessment for urban residential planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    10. Hou, Dan & Huang, Jiayu & Wang, Yanyu, 2023. "A comparison of approaches with different constraint handling techniques for energy-efficient building form optimization," Energy, Elsevier, vol. 277(C).
    11. Xie, Xing & Chen, Xing-ni & Xu, Bin & Pei, Gang, 2022. "Investigation of occupied/unoccupied period on thermal comfort in Guangzhou: Challenges and opportunities of public buildings with high window-wall ratio," Energy, Elsevier, vol. 244(PB).
    12. Yizhe Xu & Chengchu Yan & Hao Qian & Liang Sun & Gang Wang & Yanlong Jiang, 2021. "A Novel Optimization Method for Conventional Primary and Secondary School Classrooms in Southern China Considering Energy Demand, Thermal Comfort and Daylighting," Sustainability, MDPI, vol. 13(23), pages 1-19, November.
    13. Dileep Kumar & Morshed Alam & Jay G. Sanjayan, 2021. "Retrofitting Building Envelope Using Phase Change Materials and Aerogel Render for Adaptation to Extreme Heatwave: A Multi-Objective Analysis Considering Heat Stress, Energy, Environment, and Cost," Sustainability, MDPI, vol. 13(19), pages 1-29, September.
    14. Benedek Kiss & Jose Dinis Silvestre & Rita Andrade Santos & Zsuzsa Szalay, 2021. "Environmental and Economic Optimisation of Buildings in Portugal and Hungary," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    15. Burek, Jasmina & Nutter, Darin W., 2019. "A life cycle assessment-based multi-objective optimization of the purchased, solar, and wind energy for the grocery, perishables, and general merchandise multi-facility distribution center network," Applied Energy, Elsevier, vol. 235(C), pages 1427-1446.
    16. Saurbayeva, Assemgul & Memon, Shazim Ali & Kim, Jong, 2023. "Integrated multi-stage sensitivity analysis and multi-objective optimization approach for PCM integrated residential buildings in different climate zones," Energy, Elsevier, vol. 278(PB).
    17. Lorenzo Gragnaniello & Marcello Iasiello & Gerardo Maria Mauro, 2022. "Multi-Objective Optimization of a Heat Sink for the Thermal Management of a Peltier-Cell-Based Biomedical Refrigerator," Energies, MDPI, vol. 15(19), pages 1-12, October.
    18. Sierra-Pérez, Jorge & Rodríguez-Soria, Beatriz & Boschmonart-Rives, Jesús & Gabarrell, Xavier, 2018. "Integrated life cycle assessment and thermodynamic simulation of a public building’s envelope renovation: Conventional vs. Passivhaus proposal," Applied Energy, Elsevier, vol. 212(C), pages 1510-1521.
    19. Yuanxin Liu & FengYun Li & Yi Wang & Xinhua Yu & Jiahai Yuan & Yuwei Wang, 2018. "Assessing the Environmental Impact Caused by Power Grid Projects in High Altitude Areas Based on BWM and Vague Sets Techniques," Sustainability, MDPI, vol. 10(6), pages 1-20, May.
    20. Patricia González-Vallejo & Radu Muntean & Jaime Solís-Guzmán & Madelyn Marrero, 2020. "Carbon Footprint of Dwelling Construction in Romania and Spain. A Comparative Analysis with the OERCO2 Tool," Sustainability, MDPI, vol. 12(17), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222022551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.