IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v251y2022ics0360544222007964.html
   My bibliography  Save this article

Numerical study on preheating process of molten salt tower receiver in windy conditions

Author

Listed:
  • Zuo, Yuhang
  • Li, Yawei
  • Zhou, Hao

Abstract

In the preheating process of the molten salt tower receiver, the thermal stress is large and the over-temperature problem is prone to occur. The finite volume method and two-dimensional thermoelastic method are combined in this paper to study the preheating process of the receiver tube in windy conditions. The experimental results of a lab-scale receiver verify the numerical model. Then, the influence of heat flux, wind speed, wind direction, ambient temperature and uniformity of heat flux distribution on the preheating process is explored. Finally, the influence of salt filling temperature and salt filling mass flow on the salt circulating is also revealed. The results indicate that the increase in heat flux, decrease in wind speed and increase in ambient temperature decrease the preheating time. The wind in the direction of 30° from the front side of the tube has the greatest influence on the preheating process. Compared with the no-wind condition, the preheating time increases by 177.5%. The maximum tube wall temperature and thermal stress are significantly higher under non-uniform heat flux distribution than those under uniform heat flux distribution. The salt inlet temperature and salt inlet mass flow respectively affect the stable value and reduction rate of thermal stress.

Suggested Citation

  • Zuo, Yuhang & Li, Yawei & Zhou, Hao, 2022. "Numerical study on preheating process of molten salt tower receiver in windy conditions," Energy, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:energy:v:251:y:2022:i:c:s0360544222007964
    DOI: 10.1016/j.energy.2022.123893
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222007964
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123893?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Hao & Li, Yawei & Zuo, Yuhang & Zhou, Mingxi & Fang, Wenfeng & Zhu, Yifan, 2021. "Thermal performance and thermal stress analysis of a 600 MWth solar cylinder external receiver," Renewable Energy, Elsevier, vol. 164(C), pages 331-345.
    2. Yang, Lin & Ling, Xiang & Peng, Hao & Duan, LuanFang & Chen, Xiaoyi, 2019. "Starting characteristics of a novel high temperature flat heat pipe receiver in solar power tower plant based of“Flat-front”Startup model," Energy, Elsevier, vol. 183(C), pages 936-945.
    3. Xu, Li & Stein, Wesley & Kim, Jin-Soo & Wang, Zhifeng, 2018. "Three-dimensional transient numerical model for the thermal performance of the solar receiver," Renewable Energy, Elsevier, vol. 120(C), pages 550-566.
    4. Cantone, Marco & Cagnoli, Mattia & Fernandez Reche, Jesus & Savoldi, Laura, 2020. "One-side heating test and modeling of tubular receivers equipped with turbulence promoters for solar tower applications," Applied Energy, Elsevier, vol. 277(C).
    5. Yu, Qiang & Fu, Peng & Yang, Yihui & Qiao, Jiafei & Wang, Zhifeng & Zhang, Qiangqiang, 2020. "Modeling and parametric study of molten salt receiver of concentrating solar power tower plant," Energy, Elsevier, vol. 200(C).
    6. González-Roubaud, Edouard & Pérez-Osorio, David & Prieto, Cristina, 2017. "Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 133-148.
    7. Alhussein Albarbar & Abdullah Arar, 2019. "Performance Assessment and Improvement of Central Receivers Used for Solar Thermal Plants," Energies, MDPI, vol. 12(16), pages 1-27, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue, Xue & Liu, Xiang & Zhu, Yifan & Yuan, Lei & Zhu, Ying & Jin, Kelang & Zhang, Lei & Zhou, Hao, 2023. "Numerical modeling and parametric study of the heat storage process of the 1.05 MW molten salt furnace," Energy, Elsevier, vol. 282(C).
    2. Wang, Wen-Qi & Li, Ming-Jia & Jiang, Rui & Cheng, Ze-Dong & He, Ya-Ling, 2022. "A comparison between lumped parameter method and computational fluid dynamics method for steady and transient optical-thermal characteristics of the molten salt receiver in solar power tower," Energy, Elsevier, vol. 245(C).
    3. Li, Yawei & Zhou, Hao & Zuo, Yuhang & Zhang, Mingrui, 2022. "Experimental and numerical study on the preheating process of a lab-scale solar molten salt receiver," Renewable Energy, Elsevier, vol. 182(C), pages 602-614.
    4. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Muhammad Suleman Malik & Naveed Iftikhar & Abdul Wadood & Muhammad Omer Khan & Muhammad Usman Asghar & Shahbaz Khan & Tahir Khurshaid & Ki-Chai Kim & Zabdur Rehman & S. Tauqeer ul Islam Rizvi, 2020. "Design and Fabrication of Solar Thermal Energy Storage System Using Potash Alum as a PCM," Energies, MDPI, vol. 13(23), pages 1-16, November.
    6. Delise, T. & Tizzoni, A.C. & Menale, C. & Telling, M.T.F. & Bubbico, R. & Crescenzi, T. & Corsaro, N. & Sau, S. & Licoccia, S., 2020. "Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid," Applied Energy, Elsevier, vol. 265(C).
    7. de Sá, Alexandre Bittencourt & Pigozzo Filho, Victor César & Tadrist, Lounès & Passos, Júlio César, 2018. "Direct steam generation in linear solar concentration: Experimental and modeling investigation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 910-936.
    8. Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Carballo, Jose Antonio & Carra, Maria Elena & Gianella, Sandro & Ferrari, Luca & Sanchez-Señoran, Daniel, 2022. "CFD analysis of the performance impact of geometrical shape on volumetric absorbers in a standard cup," Renewable Energy, Elsevier, vol. 201(P1), pages 256-272.
    9. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    10. Zhang, Qiang & Jiang, Kaijun & Ge, Zhihua & Yang, Lijun & Du, Xiaoze, 2021. "Control strategy of molten salt solar power tower plant function as peak load regulation in grid," Applied Energy, Elsevier, vol. 294(C).
    11. Fernández, Angel G. & Gomez-Vidal, Judith & Oró, Eduard & Kruizenga, Alan & Solé, Aran & Cabeza, Luisa F., 2019. "Mainstreaming commercial CSP systems: A technology review," Renewable Energy, Elsevier, vol. 140(C), pages 152-176.
    12. Adrián Caraballo & Santos Galán-Casado & Ángel Caballero & Sara Serena, 2021. "Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis," Energies, MDPI, vol. 14(4), pages 1-15, February.
    13. Astolfi, Marco & Alfani, Dario & Lasala, Silvia & Macchi, Ennio, 2018. "Comparison between ORC and CO2 power systems for the exploitation of low-medium temperature heat sources," Energy, Elsevier, vol. 161(C), pages 1250-1261.
    14. Zhang, Qiangqiang & Chang, Zheshao & Fu, Mingkai & Nie, Fuliang & Ren, Ting & Li, Xin, 2023. "Performance analysis of a light uniform device for the solar receiver or reactor," Energy, Elsevier, vol. 270(C).
    15. Daniarta, Sindu & Nemś, Magdalena & Kolasiński, Piotr, 2023. "A review on thermal energy storage applicable for low- and medium-temperature organic Rankine cycle," Energy, Elsevier, vol. 278(PA).
    16. Saranprabhu, M.K. & Rajan, K.S., 2019. "Magnesium oxide nanoparticles dispersed solar salt with improved solid phase thermal conductivity and specific heat for latent heat thermal energy storage," Renewable Energy, Elsevier, vol. 141(C), pages 451-459.
    17. Chen, Jinli & Xiao, Gang & Ferrari, Mario Luigi & Yang, Tianfeng & Ni, Mingjiang & Cen, Kefa, 2020. "Dynamic simulation of a solar-hybrid microturbine system with experimental validation of main parts," Renewable Energy, Elsevier, vol. 154(C), pages 187-200.
    18. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    19. Ji, Junping & Tang, Hua & Jin, Peng, 2019. "Economic potential to develop concentrating solar power in China: A provincial assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    20. Li, Jing & Gao, Guangtao & Kutlu, Cagri & Liu, Keliang & Pei, Gang & Su, Yuehong & Ji, Jie & Riffat, Saffa, 2019. "A novel approach to thermal storage of direct steam generation solar power systems through two-step heat discharge," Applied Energy, Elsevier, vol. 236(C), pages 81-100.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:251:y:2022:i:c:s0360544222007964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.