IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v247y2022ics0360544222002808.html
   My bibliography  Save this article

Study and test of a post combustion chamber for a recuperative reheat Stirling machine

Author

Listed:
  • Nader, Wissam Bou
  • Jaworski, Jaroslaw
  • Leyko, Jacek
  • Mitukiewicz, Grzegorz
  • Batory, Damian
  • Bouriot, Jean

Abstract

Stirling machines present a forthcoming potential for substituting the internal combustion engine as an auxiliary power unit in future series hybrid electric powertrains. Different Stirling thermodynamic configurations can be found in the literature. Among them, the recuperative reheat Stirling thermodynamic cycle offers high net specific work and high efficiency, resulting in reduced system's weight, size and integration complexity, as well as reduced vehicle's fuel consumption. This paper presents an experimental investigation of the impact of Stirling combustion reheat process on the system performance and emissions. For that purpose a Stirling combustion chamber was modified and a post combustion chamber was added. The new configuration of the designed combustion chamber was manufactured and tested. The effect of reheating process on pollutant emissions was evaluated by measuring the NOx emissions and compared to the fuel quantity injected in both reheat and no reheat configurations. The test results demonstrate the high importance of reheating process in decreasing the NOx emission. The obtained reduction was more than 50% in comparison to the original construction. Consequently, the recuperative reheat Stirling thermodynamic configuration was selected as the best candidate for replacing the internal combustion engine.

Suggested Citation

  • Nader, Wissam Bou & Jaworski, Jaroslaw & Leyko, Jacek & Mitukiewicz, Grzegorz & Batory, Damian & Bouriot, Jean, 2022. "Study and test of a post combustion chamber for a recuperative reheat Stirling machine," Energy, Elsevier, vol. 247(C).
  • Handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222002808
    DOI: 10.1016/j.energy.2022.123377
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222002808
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123377?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eid, Eldesouki, 2009. "Performance of a beta-configuration heat engine having a regenerative displacer," Renewable Energy, Elsevier, vol. 34(11), pages 2404-2413.
    2. Cheng, Chin-Hsiang & Yu, Ying-Ju, 2011. "Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism via the combination of the thermodynamic and dynamic models," Renewable Energy, Elsevier, vol. 36(2), pages 714-725.
    3. Zhu, Shunmin & Yu, Guoyao & Liang, Kun & Dai, Wei & Luo, Ercang, 2021. "A review of Stirling-engine-based combined heat and power technology," Applied Energy, Elsevier, vol. 294(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Chin-Hsiang & Yang, Hang-Suin & Keong, Lam, 2013. "Theoretical and experimental study of a 300-W beta-type Stirling engine," Energy, Elsevier, vol. 59(C), pages 590-599.
    2. Hooshang, M. & Askari Moghadam, R. & AlizadehNia, S., 2016. "Dynamic response simulation and experiment for gamma-type Stirling engine," Renewable Energy, Elsevier, vol. 86(C), pages 192-205.
    3. Luo, Zhongyang & Sultan, Umair & Ni, Mingjiang & Peng, Hao & Shi, Bingwei & Xiao, Gang, 2016. "Multi-objective optimization for GPU3 Stirling engine by combining multi-objective algorithms," Renewable Energy, Elsevier, vol. 94(C), pages 114-125.
    4. Karabulut, Halit & Okur, Melih & Halis, Serdar & Altin, Murat, 2019. "Thermodynamic, dynamic and flow friction analysis of a Stirling engine with Scotch yoke piston driving mechanism," Energy, Elsevier, vol. 168(C), pages 169-181.
    5. Cheng, Chin-Hsiang & Yang, Hang-Suin, 2011. "Analytical model for predicting the effect of operating speed on shaft power output of Stirling engines," Energy, Elsevier, vol. 36(10), pages 5899-5908.
    6. Yang, Hang-Suin & Zhu, Hao-Qiang & Xiao, Xian-Zhong, 2023. "Comparison of the dynamic characteristics and performance of beta-type Stirling engines operating with different driving mechanisms," Energy, Elsevier, vol. 275(C).
    7. Rahmati, A. & Varedi-Koulaei, S.M. & Ahmadi, M.H. & Ahmadi, H., 2022. "Dynamic synthesis of the alpha-type stirling engine based on reducing the output velocity fluctuations using Metaheuristic algorithms," Energy, Elsevier, vol. 238(PB).
    8. Janis Kramens & Megija Valtere & Guntars Krigers & Vladimirs Kirsanovs & Dagnija Blumberga, 2024. "Ranking of Independent Small-Scale Electricity Generation Systems," Clean Technol., MDPI, vol. 6(1), pages 1-12, February.
    9. Paul, Christopher J. & Engeda, Abraham, 2015. "Modeling a complete Stirling engine," Energy, Elsevier, vol. 80(C), pages 85-97.
    10. Cheng, Chin-Hsiang & Yang, Hang-Suin, 2013. "Theoretical model for predicting thermodynamic behavior of thermal-lag Stirling engine," Energy, Elsevier, vol. 49(C), pages 218-228.
    11. Cheng, Chin-Hsiang & Yang, Hang-Suin, 2014. "Optimization of rhombic drive mechanism used in beta-type Stirling engine based on dimensionless analysis," Energy, Elsevier, vol. 64(C), pages 970-978.
    12. David García & María-José Suárez & Eduardo Blanco & Jesús-Ignacio Prieto, 2022. "Experimental and Numerical Characterisation of a Non-Tubular Stirling Engine Heater for Biomass Applications," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    13. İncili, Veysel & Karaca Dolgun, Gülşah & Keçebaş, Ali & Ural, Tolga, 2023. "Energy and exergy analyses of a coal-fired micro-CHP system coupled engine as a domestic solution," Energy, Elsevier, vol. 274(C).
    14. Bataineh, Khaled, 2018. "Mathematical formulation of alpha -type Stirling engine with Ross Yoke mechanism," Energy, Elsevier, vol. 164(C), pages 1178-1199.
    15. Chin-Hsiang Cheng & Duc-Thuan Phung, 2021. "Numerical Optimization of the β-Type Stirling Engine Performance Using the Variable-Step Simplified Conjugate Gradient Method," Energies, MDPI, vol. 14(23), pages 1-14, November.
    16. Salvatore Ranieri & Gilberto A. O. Prado & Brendan D. MacDonald, 2018. "Efficiency Reduction in Stirling Engines Resulting from Sinusoidal Motion," Energies, MDPI, vol. 11(11), pages 1-14, October.
    17. Araoz, Joseph A. & Salomon, Marianne & Alejo, Lucio & Fransson, Torsten H., 2015. "Numerical simulation for the design analysis of kinematic Stirling engines," Applied Energy, Elsevier, vol. 159(C), pages 633-650.
    18. Erol, Derviş & Yaman, Hayri & Doğan, Battal, 2017. "A review development of rhombic drive mechanism used in the Stirling engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1044-1067.
    19. Liu, Yiwei & Shen, Tianrun & Lv, Xiaochen & Zhang, Guang & Wang, Chao & Gu, Junping & Zhang, Xian & Wang, Qinggong & Chen, Xiong & Quan, Xiaojun & Yao, Wei, 2023. "Investigation on a lunar energy storage and conversion system based on the in-situ resources utilization," Energy, Elsevier, vol. 268(C).
    20. Xiao, Lei & Wu, Zhanghua & Zhu, Qilu & Jia, Zilong & Zhao, Dong & Hu, Jianying & Zhu, Shunmin & Luo, Ercang, 2023. "Dynamic response of a dual-opposed free-piston Stirling generator," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:247:y:2022:i:c:s0360544222002808. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.