IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v244y2022ipbs0360544222000299.html
   My bibliography  Save this article

Experimental investigation of a splitting CO2 transcritical power cycle in engine waste heat recovery

Author

Listed:
  • Li, Ligeng
  • Tian, Hua
  • Shi, Lingfeng
  • Zhang, Yonghao
  • Huang, Guangdai
  • Zhang, Hongfei
  • Wang, Xuan
  • Shu, Gequn

Abstract

Since the great potential to improve engine efficiency was found in engine waste heat recovery, the recuperative CO2 transcritical power cycle (CTPC) was supposed to be a promising technological path, whereas high irreversibility in recuperator and low engine exhaust utilization were also found. Hence, a novel splitting design as well as the experimental system was constructed to improve the irreversibility and exhaust utilization.

Suggested Citation

  • Li, Ligeng & Tian, Hua & Shi, Lingfeng & Zhang, Yonghao & Huang, Guangdai & Zhang, Hongfei & Wang, Xuan & Shu, Gequn, 2022. "Experimental investigation of a splitting CO2 transcritical power cycle in engine waste heat recovery," Energy, Elsevier, vol. 244(PB).
  • Handle: RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222000299
    DOI: 10.1016/j.energy.2022.123126
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222000299
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123126?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
    2. Shu, Gequn & Shi, Lingfeng & Tian, Hua & Deng, Shuai & Li, Xiaoya & Chang, Liwen, 2017. "Configurations selection maps of CO2-based transcritical Rankine cycle (CTRC) for thermal energy management of engine waste heat," Applied Energy, Elsevier, vol. 186(P3), pages 423-435.
    3. Shu, Gequn & Shi, Lingfeng & Tian, Hua & Li, Xiaoya & Huang, Guangdai & Chang, Liwen, 2016. "An improved CO2-based transcritical Rankine cycle (CTRC) used for engine waste heat recovery," Applied Energy, Elsevier, vol. 176(C), pages 171-182.
    4. Ahn, Yoonhan & Lee, Jekyoung & Kim, Seong Gu & Lee, Jeong Ik & Cha, Jae Eun & Lee, Si-Woo, 2015. "Design consideration of supercritical CO2 power cycle integral experiment loop," Energy, Elsevier, vol. 86(C), pages 115-127.
    5. Padilla, Ricardo Vasquez & Too, Yen Chean Soo & Benito, Regano & McNaughton, Robbie & Stein, Wes, 2016. "Thermodynamic feasibility of alternative supercritical CO2 Brayton cycles integrated with an ejector," Applied Energy, Elsevier, vol. 169(C), pages 49-62.
    6. Fu, Jianqin & Liu, Jingping & Feng, Renhua & Yang, Yanping & Wang, Linjun & Wang, Yong, 2013. "Energy and exergy analysis on gasoline engine based on mapping characteristics experiment," Applied Energy, Elsevier, vol. 102(C), pages 622-630.
    7. Mondal, Subha & De, Sudipta, 2015. "Transcritical CO2 power cycle – Effects of regenerative heating using turbine bleed gas at intermediate pressure," Energy, Elsevier, vol. 87(C), pages 95-103.
    8. Li, Ligeng & Tian, Hua & Shi, Lingfeng & Wang, Jingyu & Li, Min & Shu, Gequn, 2021. "Adaptive flow assignment for CO2 transcritical power cycle (CTPC): An engine operational profile-based off-design study," Energy, Elsevier, vol. 225(C).
    9. Kim, Young Min & Sohn, Jeong Lak & Yoon, Eui Soo, 2017. "Supercritical CO2 Rankine cycles for waste heat recovery from gas turbine," Energy, Elsevier, vol. 118(C), pages 893-905.
    10. Zhang, Ruiyuan & Su, Wen & Lin, Xinxing & Zhou, Naijun & Zhao, Li, 2020. "Thermodynamic analysis and parametric optimization of a novel S–CO2 power cycle for the waste heat recovery of internal combustion engines," Energy, Elsevier, vol. 209(C).
    11. Rajabloo, Talieh & Bonalumi, Davide & Iora, Paolo, 2017. "Effect of a partial thermal decomposition of the working fluid on the performances of ORC power plants," Energy, Elsevier, vol. 133(C), pages 1013-1026.
    12. Chatzopoulou, Maria Anna & Simpson, Michael & Sapin, Paul & Markides, Christos N., 2019. "Off-design optimisation of organic Rankine cycle (ORC) engines with piston expanders for medium-scale combined heat and power applications," Applied Energy, Elsevier, vol. 238(C), pages 1211-1236.
    13. Wang, Shun-sen & Wu, Chuang & Li, Jun, 2018. "Exergoeconomic analysis and optimization of single-pressure single-stage and multi-stage CO2 transcritical power cycles for engine waste heat recovery: A comparative study," Energy, Elsevier, vol. 142(C), pages 559-577.
    14. Choi, Byung Chul, 2016. "Thermodynamic analysis of a transcritical CO2 heat recovery system with 2-stage reheat applied to cooling water of internal combustion engine for propulsion of the 6800 TEU container ship," Energy, Elsevier, vol. 107(C), pages 532-541.
    15. He, Wei & Wang, Shixue, 2017. "Thermoelectric performance optimization when considering engine power loss caused by back pressure applied to engine exhaust waste heat recovery," Energy, Elsevier, vol. 133(C), pages 584-592.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Yue & Zhan, Jun & Jia, Boqing & Chen, Ranjing & Si, Fengqi, 2023. "Optimum design of bivariate operation strategy for a supercritical/ transcritical CO2 hybrid waste heat recovery system driven by gas turbine exhaust," Energy, Elsevier, vol. 284(C).
    2. Lu, Bowen & Zhang, Zhifu & Cai, Jinwen & Wang, Wei & Ju, Xueming & Xu, Yao & Lu, Xun & Tian, Hua & Shi, Lingfeng & Shu, Gequn, 2023. "Integrating engine thermal management into waste heat recovery under steady-state design and dynamic off-design conditions," Energy, Elsevier, vol. 272(C).
    3. Liang, Youcai & Ye, Kai & Zhu, Yan & Lu, Jidong, 2023. "Thermodynamic analysis of two-stage and dual-temperature ejector refrigeration cycles driven by the waste heat of exhaust gas," Energy, Elsevier, vol. 278(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Ligeng & Tian, Hua & Shi, Lingfeng & Wang, Jingyu & Li, Min & Shu, Gequn, 2021. "Adaptive flow assignment for CO2 transcritical power cycle (CTPC): An engine operational profile-based off-design study," Energy, Elsevier, vol. 225(C).
    2. Li, Ligeng & Tian, Hua & Liu, Peng & Shi, Lingfeng & Shu, Gequn, 2021. "Optimization of CO2 Transcritical Power Cycle (CTPC) for engine waste heat recovery based on split concept," Energy, Elsevier, vol. 229(C).
    3. Xia, Jiaxi & Wang, Jiangfeng & Lou, Juwei & Hu, Jianjun & Yao, Sen, 2023. "Thermodynamic, economic, environmental analysis and multi-objective optimization of a novel combined cooling and power system for cascade utilization of engine waste heat," Energy, Elsevier, vol. 277(C).
    4. Cao, Yue & Rattner, Alexander S. & Dai, Yiping, 2018. "Thermoeconomic analysis of a gas turbine and cascaded CO2 combined cycle using thermal oil as an intermediate heat-transfer fluid," Energy, Elsevier, vol. 162(C), pages 1253-1268.
    5. Li, Xiaoya & Tian, Hua & Shu, Gequn & Zhao, Mingru & Markides, Christos N. & Hu, Chen, 2019. "Potential of carbon dioxide transcritical power cycle waste-heat recovery systems for heavy-duty truck engines," Applied Energy, Elsevier, vol. 250(C), pages 1581-1599.
    6. Li, Xiaoya & Xu, Bin & Tian, Hua & Shu, Gequn, 2021. "Towards a novel holistic design of organic Rankine cycle (ORC) systems operating under heat source fluctuations and intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    7. Huang, Guangdai & Shu, Gequn & Tian, Hua & Shi, Lingfeng & Zhuge, Weilin & Zhang, Jing & Atik, Mohammad Atikur Rahman, 2020. "Development and experimental study of a supercritical CO2 axial turbine applied for engine waste heat recovery," Applied Energy, Elsevier, vol. 257(C).
    8. Li, Xiaoya & Shu, Gequn & Tian, Hua & Shi, Lingfeng & Huang, Guangdai & Chen, Tianyu & Liu, Peng, 2017. "Preliminary tests on dynamic characteristics of a CO2 transcritical power cycle using an expansion valve in engine waste heat recovery," Energy, Elsevier, vol. 140(P1), pages 696-707.
    9. Linares, José Ignacio & Cantizano, Alexis & Arenas, Eva & Moratilla, Beatriz Yolanda & Martín-Palacios, Víctor & Batet, Lluis, 2017. "Recuperated versus single-recuperator re-compressed supercritical CO2 Brayton power cycles for DEMO fusion reactor based on dual coolant lithium lead blanket," Energy, Elsevier, vol. 140(P1), pages 307-317.
    10. Xia, Jiaxi & Wang, Jiangfeng & Zhou, Kehan & Zhao, Pan & Dai, Yiping, 2018. "Thermodynamic and economic analysis and multi-objective optimization of a novel transcritical CO2 Rankine cycle with an ejector driven by low grade heat source," Energy, Elsevier, vol. 161(C), pages 337-351.
    11. Yao, Yu & Shi, Lingfeng & Tian, Hua & Wang, Xuan & Sun, Xiaocun & Zhang, Yonghao & Wu, Zirui & Sun, Rui & Shu, Gequn, 2022. "Combined cooling and power cycle for engine waste heat recovery using CO2-based mixtures," Energy, Elsevier, vol. 240(C).
    12. Zhu, Sipeng & Zhang, Kun & Deng, Kangyao, 2020. "A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    13. Lingfeng Shi & Gequn Shu & Hua Tian & Guangdai Huang & Liwen Chang & Tianyu Chen & Xiaoya Li, 2017. "Ideal Point Design and Operation of CO 2 -Based Transcritical Rankine Cycle (CTRC) System Based on High Utilization of Engine’s Waste Heats," Energies, MDPI, vol. 10(11), pages 1-21, October.
    14. Shi, Lingfeng & Shu, Gequn & Tian, Hua & Wang, Xuan, 2020. "Assessment of waste heat recovery system for automotive engine with weight effect," Energy, Elsevier, vol. 193(C).
    15. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Zhang, Wujie & Wang, Yan & Yao, Baofeng, 2023. "Dynamic response assessment and multi-objective optimization of organic Rankine cycle (ORC) under vehicle driving cycle conditions," Energy, Elsevier, vol. 263(PA).
    16. Zhu, Sipeng & Ma, Zetai & Zhang, Kun & Deng, Kangyao, 2020. "Energy and exergy analysis of the combined cycle power plant recovering waste heat from the marine two-stroke engine under design and off-design conditions," Energy, Elsevier, vol. 210(C).
    17. He, Jintao & Shi, Lingfeng & Tian, Hua & Wang, Xuan & Zhang, Yonghao & Zhang, Meiyan & Yao, Yu & Cai, Jinwen & Shu, Gequn, 2022. "Control strategy for a CO2-based combined cooling and power generation system based on heat source and cold sink fluctuations," Energy, Elsevier, vol. 257(C).
    18. Jin, Qinglong & Xia, Shaojun & Chen, Lingen, 2023. "A modified recompression S–CO2 Brayton cycle and its thermodynamic optimization," Energy, Elsevier, vol. 263(PE).
    19. Crespi, Francesco & Gavagnin, Giacomo & Sánchez, David & Martínez, Gonzalo S., 2017. "Supercritical carbon dioxide cycles for power generation: A review," Applied Energy, Elsevier, vol. 195(C), pages 152-183.
    20. Li, Ligeng & Tian, Hua & Shi, Lingfeng & Zhang, Yonghao & Shu, Gequn, 2022. "Reducing the operational fluctuation via splitting CO2 transcritical power cycle in engine waste heat recovery," Energy, Elsevier, vol. 252(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:244:y:2022:i:pb:s0360544222000299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.